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introduction

Antiestrogens have been successfully used in the management of breast cancer since the first
clinical trial of Tamoxifen (TAM) in 1971 [1]. TAM produces a significant increase in both
overall and recurrence-free survival but resistance almost inevitably arises in most patients [2,3].
We hypothesize that one form of acquired antiestrogen resistance reflects the altered expression
of what were previously estrogen-regulated genes. We further hypothesize that only a subset of
all estrogen (E2)-regulated genes, those comprising a specific gene network, is responsible for
the resistance phenotype. Since TAM (triphenylethylene) and ICI 182,780 (steroidal) induce
different ER conformations, we also hypothesize that the consequent patterns of gene regulation
will be different and dictate the presence/absence of crossresistance among antiestrogens.

To address these hypotheses, we have generated novel E2-independent and antiestrogen
resistant variants of the E2-dependent, MCF-7 human breast cancer cell line (MCF7/MIII,
MCF7/LCC1, MCF7/LCC2, MCF-7/LCC9) - recently reviewed in [4]. We also have assembled
a panel of additional resistant cells from within this institution and from other investigators.
These include additional antiestrogen resistant MCF-7 variants (L Y2, R27, R3, MCF-7RR), all
of which express ER, and the ER-negative ZR-75-1 (ZR75/LCC3, ZR-75-9al) and T47D
(T47Dco) variants. Other resistance models are currently being obtained from other laboratories
or being generated by selection in vivo selection against TAM in athymic nude rats (rats and
humans perceive TAM as a partial agonist, mice perceive TAM as a pure agonist).

This is an Idea Award to study the genes and patterns of genes expressed in acquired
antiestrogen resistance in cell culture models. The PI will apply new, state-of-the-art
technologies to identify key endocrine-regulated molecular pathways to apoptosis/proliferation.
By identifying key components of these pathways, we may be able to predict response to first-
line and crossover antiestrogenic therapies, and/or provide novel therapeutic strategies for
antiestrogen resistant tumors.

Body of Text

Our purpose is to evaluate a series of antiestrogen responsive and resistant breast cancer cell
lines for their patterns of gene expression. We will explore these data, using state-of-the-art
clustering pattern analysis through joint use of the standard Finite Normal Mixture models and
probabilistic component subspaces, where the multimodal clusters will be automatically
‘identified using Akaike information criterion and Minimal Description Length analyses. We also
will apply the more computationally simplistic methods used by others in the field.
In our previous report, we made one change to the specific aims and Statement of Work.

Our collaborations with Dr. Wang's group at Catholic University of America have increased
substantially, and we have begun to develop and test several new algorithms for mining the high
dimensional data sets produced by gene expression microarray analyses.
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Specific Aims

Specific Aim 1: use gene microarrays to identify differentially expressed genes in a panel of
breast cancer cell lines.

Specific Aim 2: explore the data from Aim 1 to identify those differentially expressed gene
clusters most closely associated with acquired antiestrogen resistance and test further novel
algorithms for the analysis of gene expression microarray data.

Specific Aim 3: begin to assess the likely functional relevance of representative members of
these clusters and study their expression in human breast cancer biopsies.

Long term aims: establish a pattern(s) of gene clusters that can predict antiestrogen responses in
patients. This could lead to a more effective identification of candidates for specific antiestrogen
therapies and identify those patients least likely to respond and who may benefit from an early
initiation of cytotoxic chemotherapy.

Statement of Work and Progress on the Work Proposed

The Specific Aims of this application are being addressed in the studies outlined in the Statement
of Work.

TASK 1: Use gene microarrays to identify differentially expressed genes in a panel of breast
cancer cell lines.

Expand cells and prepare RNA from cell lines for pilot study

Label RNA populations, probe microarrays and digitize data

Optimize probing/reprobing as necessary

Expand cells and prepare RNA from replicate cultures of remaining cell lines (including
ER-negative cells) for the baseline study

Label RNA populations, probe microarrays. and digitize data

Expand cells, treat with ICI 182,780 and 4-hydroxyTAM and prepare RNA from
replicate cultures

E. Label RNA populations, probe microarrays, and digitize data

MW gow

We have effectively completed this aim and have generated all the treated cell populations and
RNAs. We have arrayed most of the populations on the initial Research Genetics arrays and
individually aligned all of the digitized images. We used Pathways vs. 4.0 and independently
align each of the ~4,000 spots/array; this is rather time consuming but provides much higher
quality data than using only the software to align automatically each spot. In year 3, we will
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perform limited studies on the same RNAs using our Affymetrix system and compare data across
platforms.

We have one paper on our initial studies from the Clontech arrays (Gu et al., Cancer Res 62:
3428-3437, 2002). A paper on the data from the Research Genetics platform is in preparation.

TASK 2: Explore the data from Aim 1 to identify those differentially expressed gene clusters
most closely associated with acquired antiestrogen resistance.

A. Perform preliminary analysis of pilot study and identify candidates for further study

B. Generate reagents and confirm differential regulation/expression of candidates from the
pilot study

C. Analyze the data from the baseline study (includes evaluation of ER-negative models
both separately and together with ER-positive cell) using all four data analysis
approaches and identify candidates for further study

D. Generate reagents and confirm differential regulation/expression of candidates from the
baseline study

E. Analyze the data from the treatment study using all four approaches and identify
candidates for further study

F. Perform overall and final analyses, compare data from each analytical method and
identify candidates for further study

G. Generate reagents and confirm differential regulation/expression of candidates from the
treatment study

H. Test novel algorithms for the analysis of gene expression microarray data

We have completed "A" and "B" and (in Aim 1) and generated most of the data/reagents needed
for "C" and "D".

Our initial studies identified several genes of interest. The paper by Gu et al. describes several of
these for which we have already confirmed differential expression and/or antiestrogenic
regulation. Other genes in this paper will be evaluated under "D". Our data in this paper includes
both microarray (Table 1) and serial analysis of gene expression (SAGE; Table 2) data. Since our
study is hypothesis driven rather than technology driven, we will include genes identified by
SAGE in our future studies.
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Table 1 Representative list of differentially expressed genes identified by gene microarray

analyses

Gene® Unigene # MCF7/LCC1® MCF7/LCC9  Gene Function

NFkB transcription factor involved in
Hs.75569 1 2 cell survival signaling

SOD enzyme involved in detoxifying
Hs.75428 1 2 oxygen radicals

EGR-1 Hs.326035 3 1 transcription factor

EGFR Hs.77432 2 1 growth factor receptor

IRF-1 transcription factor involved in

signaling to cell cycle arrest and

Hs.80645 2 1 apoptosis '

TNFa Hs.241570 2 1 Cytokine

TNF-R1 cytokine receptor involved in
Hs.159 2 1 signaling to apoptosis

? Abbreviations are NFkB, nuclear factor kappa B; SOD, superoxide dismutase; EGR-1, early

growth response gene-1; EGF-R, epidermal growth factor receptor; IRF-1, interferon regulatory

factor -1; TNFa, tumor necrosis factor alpha; TNF-R1,tumor necrosis factor-receptor 1.

PData are represented as level of expression relative to the other cell line. Data are based on the

mean values for each gene (6 microarrays of MCF7/LCCI1; 5 microarrays of MCF7/LCC9).
Values are expressed to the nearest integer.
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Table 2 Differentially expressed genes identified in the MCF7/LCCI and MCF7/LCC9 SAGE

libraries
Putative Gene® MCF7/ MCF7/ Differ- p- :
Unigene # LCC1 LCC9 ence” value’  Gene Function
N-ras related
gene Hs.260523 2 20 10-fold <0.001 G-protein
Cathepsin D protease involved in
Hs.343475 7 34 5-fold <0.001 tumor invasion
X-box binding
protein-1 Hs.149923 7 25 4-fold  <0.001 transcription factor
Prefoldin 5 chaperone for
Hs.288856 6 21 4-fold  0.002  unfolded proteins
HSP-27 : stress response
Hs.76067 23 55 2-fold  0.001 . protein
Vit B-12 binding vitamin binding
protein Hs2012 17 37 2-fold  0.002  protein
Nucleophosmin® 1.5- oncogenic nucleolar
Hs.9614 10 14 fold >0.05  protein
L14 Hs.738 13 2 6-fold  0.021 ribosomal protein
Death associated apoptosis associated
protein-6 Hs.336916 11 2 6-fold  0.049  protein
EF-y translation
Hs.2186 22 6 4-fold  0.014  elongation factor
Ferritin, heavy iron binding protein
polypeptide-1 Hs.62954 54 16 3-fold  <0.001

? The gene designations are considered putative, although, the identity of most genes designated

in this fashion have been shown to be correct. These genes include those Tags where: (a) the fold

difference is >2-fold, (b) the Tag could represent <2 genes, and (3) represents 20.10% of either

the MCF7/LCC1 and/or MCF7/LCC9 SAGE library.

bpredicted fold difference in gene expression between MCF7/LCC1 vs. MCF7/LCC9 cells.

°Obtained by %> analyses; p-values estimated to 3 significant figures.

4 NPM (not statistically significant) is shown because we know it to be both estrogen regulated

and associated with TAM treatment in patients.
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We have already trained and tested our initial neural predictors of antiestrogen resistance, using the
data from the Research Genetics platform. Since these studies are not finished, we will present the
mature data in our next annual report. We hope also to have published this predictor before the next
report and to include a preprint in the report. The genes in this predictor, or other differentially
expressed genes associated with the phenotypes, will be the candidate genes for "F" and "G".

In our last report we presented a new normalization algorithm; this study has now been published
(IEEE Trans Inf Technol Biomed, 6: 29-37,2002). We also have developed a novel "block principal
components analysis" method for exploring gene expression microarray data. A manuscript has been
submitted and the merthod and a reprint will be included in the next report. Thus, we continue to
address successfully Task 2H.

TASK 3: Begin to assess the likely functional relevance of representative members of these clusters
and study their expression in human breast cancer biopsies.

Obtain/generate reagents for the 1-2 candidates from the pilot study

Initiate pilot studies using transient transfection analyses

Initiate functional (transient) studies of candidates from baseline study

Initiate functional (stable transfection) studies of candidates from baseline study

Initiate functional (transient) studies of candidates from treatment study

Initiate functional (stable transfection) studies of candidates from overall analysis (only if new
candidates are identified) :

MmO oW

We continue to investigate the functional relevance of those genes/proteins that receive sufficient
priority. We cannot perform detailed functional studies of all our candidates within this application but
have used the present DOD award to obtain preliminary data to support requests for funding to study
specific genes. In this regard, we successfully used the preliminary data generated on XBP-1 to attract
additional DOD funding to perform detailed mechanistic and translational studies of XBP1. Thus, we
are now able to study XBP-1 in the broader context of its role in endocrine signaling in breast cancer,
but with a focus on its potential contribution to acquired estrogen-independence and antiestrogen
resistance. This successful application also includes retrospective studies to identify the prognostic role
of XBP-1 in breast cancer (outcome independent of therapy) and to assess whether it may have
predictive relevance in improving the ability to predict which patients are most likely to respond to
endocrine therapies.

We have completed studies showing that antiestrogen resistant MCF7/LCC9 cells, which overexpress
NF«xB transactivation (promoter-reporter activity), are more sensitive to the growth inhibitory effects
of Parthenolide, a specific inhibitor of NFxB. Growth inhibition was assessed using a dye-based assay
that effectively estimates cell number. These data are consistent with our hypothesis that increased
NFkB activation in these cells contributes to their ability to survive prolonged antiestrogen exposure.
These data are published in Gu et al., Cancer Res 62: 3428-3437, 2002).

To maintain focus within this application, we have limited our initial studies to NFkB and IRF-1. Our
intention is to obtain sufficient preliminary data to support an RO1 or DOD application focused on

10
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these two genes and their interactions in antiestrogen resistance. We have continued to study the role
of our dominant negative interferon regulatory factor-1 (dnIRF-1). Our studies progressed somewhat
more slowly than expected, mostly due to the Fellow performing the studies taking maternity leave.
However, we hope to be back on track within the next few months and complete the few remaining
experiments required to solidify and extend the data presented in last year's report. We will then submit
a manuscript on dnIRF-1 (within the next 12 months). The mature data will be included in our next
annual report.

Key Research Accomplishments (bulleted)

L Completed and published manuscript describing data from gene microarray and SAGE studies
based on the data presented in the previous report. These data show the altered regulation of X-
box binding protein-1, NFxB, NPM and IRF-1 in acquired antiestrogen resistance (manuscript

submitted).

] Completed collection of RNA from resistant and parental cell cultures.

L Obtained microarray data from resistant and parental cell cultures.

L Completed microarray data preprocessing and confirmed data quality.

° Built initial neural predictors - will be completed within the next few months.

. Completed studies implicating NFkB as a mediator of survival from prolonged antiestrogen
exposure.

° Completed and published a new algorithm based on regression through the origin for
normalizing gene expression microarray data.

° Completed and published a pilot study showing our ability to generate accurate predictive

neural networks based on gene expression microarray data. The neural network predictors that
can accurately identify the phenotype of unknown samples as being cancer or noncancer.

Reportable Outcomes »
Reportable outcomes are presented as manuscripts and abstracts.

Manuscripts and Abstracts
We have published several studies directly related to the funded work.

11
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Manuscripts

1. Ellis, M., Davis, N., Coop, A., Liu, M., Schumaker, L., Lee, R.Y., Srikanchana, R., Russell, C.,
Singh, B., Miller, W.R., Stearns, V., Pennanen, M., Tsangaris, T., Gallagher, A., Liu, A., Zwart, A.,
Hayes, D.F., Lippman, M.E., Wang, Y. & Clarke, R. “Development and validation of a method for
using breast core needle biopsies for gene expression microarray analyses.” Clin Cancer Res, 8: 1155-

1166, 2002.

2. Wang, Y., Lu, J.,, Lee, R. & Clarke, R. “Iterative normalization of cDNA microarray data .” JEEE
Trans Inf Techol Biomed, 6: 29-37, 2002. ’

3.Gu, Z., Lee, R.Y., Skaar, T.C., Bouker, K.B., Welch, J.N., Lu, J., Liu, A., Davis, N., Leonessa, F.,
Briinner, N., Wang, Y. & Clarke, R. “Association of interferon regulatory factor-1, nucleophosmin,

nuclear factor-kB and cAMP response element binding with acquired resistance to Faslodex (ICI
182,780).” Cancer Res, 8: 1155_1166, 2002.

4. Welch, J.N. & Clarke, R. "ErbB-2 expression and drug resistance in cancer." Signal, in press
(review).

Reprints of papers #1-3 are included in the appendix.

Abstracts
1. Welch, J.N., Chrysogelos, S. & Clarke, R. "Expression and function of the epidermal growth factor
receptor in breast cancer cells exposed to chemotherapy." Proc Am Assoc Cancer Res 42: 938, 2001.

2. Bouker, K.B., Skaar, T.C., Fernandez, D. & Clarke, R. "Antiestrogens regulate IRF-1 expression in
sensitive but not resistant breast cancer cells." Proc Am Assoc Cancer Res 43: 761, 2002.

3. Zhu, Y., Bouker, K., Skaar, T., Zwart, A., Gomez, B., Hewitt, S., Singh, B., Liu, A. & Clarke, R.
"High throughout tissue microarray assessment of expressions of progression-related genes - NFkB,
nucleophosmin, X-box binding protein-1 and IRF-1 in breast cancer." Proc Am Assoc Cancer Res 43:
762,2002.

We also presented our data at the recent DOD meeting in Orlando, FL.

Conclusions

We have made good progress in our studies on the molecular characterization of antiestrogen
resistance is evident in our productivity as measured by publications and new methods and preliminary
data. The study is on-track and the amount of data accumulating is considerable. However, several new
algorithms underdevelopment are showing good performance in our very preliminary analyses of
published high dimensional data sets. Our data with NFxB, IRF-1 and the dnlRF-1 are encouraging

12
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and suggest we may be on the right track to identifying new signal transduction pathways associated
with acquired antiestrogen resistance. For example, these data show that resistant cells are more
sensitive to inhibition of NFkB. Overexpression of IRF-1, which is suppressed by estrogens and
induced by antiestrogens, is associated with reduced cell proliferation. The dnIRF-1 provide an
opportunity to further explore some of the mechanistic effects of this gene in acquired antiestrogen
resistance. We also have been successful in using the preliminary data generated in this application to
attract other funding.

Literature Cited

1. Cole, M. P., Jones, C. T. A., and Todd, I. D. H. A new antioestrogenic agent in late breast cancer.
An early clinical appraisal of ICI 46474. Br J Cancer, 25: 270-275, 1971.

2. EBCTCG Early Breast Cancer Trialists Collaborative Group: Systemic treatment of early breast
cancer by hormonal, cytotoxic, or immune therapy. Lancet, 399: 1-15, 1992.

3. EBCTCG Early Breast Cancer Trialists' Collaborative Group. Tamoxifen for early breast cancer:
an overview of the randomized trials. Lancet, 357: 1451-1467, 1998.

4. Clarke, R., Leonessa, F., Welch, J. N., and Skaar, T. C. Cellular and molecular pharmacology of
antiestrogen action and resistance. Pharmacol Rev, 53: 25-71, 2001.

13




IEEE TRANSACTIONS ON INFORMATION'TECHNOLOGY IN BIOMEDICINE, VOL. 6, NO. 1, MARCH 2002 29

Iterative Normalization of cDNA Microarray Data

Yue Wang, Jianping Lu, Richard Lee, Zhiping Gu, and Robert Clarke

Abstract—This paper describes a new approach to normalizing
microarray expression data. The novel feature is to unify the tasks
of estimating normalization coefficients and identifying control
gene set. Unification is realized by constructing a window function
over the scatter plot defining the subset of constantly expressed
genes and by affecting optimization using an iterative procedure.
The structure of window function gates contributions to the
control gene set used to estimate normalization coefficients. This
window measures the consistency of the matched neighborhoods
in the scatter plot and provides a means of rejecting control gene
outliers. The recovery of normalizational regression and control
gene selection are interleaved and are realized by applying coupled
operations to the mean square error function. In this way, the two
processes bootstrap one another. We evaluate the technique on real
microarray data from breast cancer cell lines and complement the
experiment with a data cluster visualization study.

Index Terms—Data normalization, dynamic programming, gene
expression, gene microarray, linear regression.

I. INTRODUCTION

POTTED c¢DNA microarrays are emerging as a powerful

and cost-effective tool for the large-scale analysis of gene
expression. Using this technology, the relative expression levels
in two or more mRNA populations derived from tissue samples
can be assayed for thousands of genes simultaneously [1], [2].
Microarrays are potentially powerful tools for investigating the
mechanism of drug action. Two recent studies have described
the application of high-density microarrays to examine the ef-
fects of drugs on gene expression in yeast as 2a model system. A
similar method applied to human breast cancer cells and tissues
would have direct utility in the identification and validation of
novel therapeutics. It is widely accepted that the pattern of genes
expressed within a specific cell is essentially responsible for its
phenotype. The most widely publicized use of gene microarrays
has been in cancer research.

From a statistical point of view, sources of measurement error
within an array, and variation between arrays, must be quanti~
fied and taken onto account in order to make indirect compar-
isons among samples that have not been directly assayed on the
same array. For example, gene microarrays vary with produc-
tion batches, e.g., introducing variations in the amount of probe
that hybridizes to areas of the support that do not contain target
cDNAs, or the amount of the cDNA spotted onto the support

Manuscript received March 28, 2001; revised September 14, 2001. This
work was supported in part by the National Institutes of Health under Grants
SR21CA83231 and ROICA/AG58022.

Y: Wang and J. Lu arc with the Department of Electrical Engincering and
Computer Scicnce, The Catholic University of America, Washington, DC 20064
USA.

R. Lec and R. Clarke arc with the Lombardi Cancer Centcr, Georgetown Uni-
versity Mcedical Center, Washington, DC 20007 USA.

Z. Gu is with the Celera Genomics, Inc., Rockville, MD 20850 USA.
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Fig. 1. Example of cDNA microarray image.

surface. The specific activity of the probe will vary from probe
to probe, often reflecting variations in the amount of signal pro-
duced by each molecule of label incorporated into the probe.

Two major data preprocessing operations are involved: back-
ground correction and interexperiment normalization. In back-
ground correction, local sampling of background can be used
to specify a threshold that a true signal must exceed. It is even
possible to accurately detect weak signals and extract a mean
intensity above background for the target [3]. A typical cDNA
array image is given in Fig. 1.

In carrying out comparisons of expression data using mea-
surements from a single array or multiple arrays, the question
of normalizing data arises. A reasonable assumption, adopted
by most researchers, is that all experiments are carried out under
conditions of a large excess of immobilized probe relative to la-
beled target. The kinetics of hybridization aré therefore pseud-
ofirst order, and interprobe competition is not a factor [3]. Under
these assumptions, the linear differences arising from the exact
amount of applied target, extent of target labeling, efficiencies
of fluor excitation and emission, and detector efficiency can be
compounded into a single variable. Two major strategies can be
used to carry out normalization. One is based on a considera-
tion of all of the genes in the sample, and the other on a desig-
nated subset expected to be unchanged over most circumstances,
called the control gene set. In instances of closely related sam-
ples, global normalization (e.g., using all genes) will be a useful
tool. As samples become more divergent, a good normalization
may be achieved using a subset of constantly expressed genes
(e.g., using only control genes) [3].

The work most closely related to our methodology was re-
ported in [4]. The authors introduced a comparison of gene ex-
pression levels arising from cohybridized samples by taking ra-
tios of average expression levels for individual genes. A novel
method of image segmentation was presented to identify cDNA

1089-7771/02817.00 © 2002 IEEE
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target sites, and a hypothesis test and confidence interval was
developed to quantify the significance of observed differences
in expression ratios. In particular, the probability density of the
ratio and the maximum-likelihood estimator for the distribution
were derived, and an iterative procedure for signal calibration
was developed. In general, however, an integral of ratios is not
the same as a ratio of integrals, and simple ratios of the data will
not necessarily provide unbiased estimates of expression ratios.
Alternatively, the mean value of all signals on the hybridized
- filter can be used for normalization, and further normalizations
can be done to a reference hybridization [5]. Nonetheless, the
optimal approach remains controversial.

II. METHOD AND ALGORITHM

In this paper, we adopt a somewhat different approach to
the problem of normalizing microarray expression data. Rather
than rejecting those control genes that give rise to a large nor-
malization error, we attempt to iteratively correct them. In a
nutshell, our idea is to bootstrap by alternating between esti-
mating normalization coefficients and identifying control gene
subset. The framework is furnished by constructing a window
function over the scatter plot defining the subset of constantly
expressed genes. Specifically, this window measures the con-
sistency of the matched neighborhoods in the scatter plot and
provides a means of rejecting control gene outliers. We eval-
uate the technique on real microarray data from breast cancer
cell lines and complement the experiment with a data cluster
visualization study.

Our goal is to generate a a transformation that best maps the
expression levels of floating data set onto their counterparts in a
reference data set. Assume that data points {1, Z2, ..., Tn_}
and {y1, ¥2, - .., Yn.} are the expression levels of the control
or housekeeping genes from two microarray experiments, where
n. is the total number of control genes. In this paper, we use
{z:} as the floating data set and {y;} as the reference data
set. We further assume that the normalization can be accurately
achieved through a linear regression mapping

¥ =az; +b 1)
where a is the true ratio of the data and b is the bias correction of
the data. Since there are two free parameters in the transforma-
tion, the estimation of their values requires a minimum of two
data points that are known to be in correspondence. By consid-
ering noise effect, however, more control points are needed to
produce an accurate estimate. This process is overconstrained
and can be solved using least squares estimation. Clearly, a nat-
ural criterion is the minimum mean squared error between the
two control data subsets. Based on the expression levels of the
control genes, the mean squared error (MSE) can be written as

Thus, the search principle for estimating the optimal values of
a and b is simply taking the partial derivatives of the MSE and

setting them to zero. It can be shown that the estimated linear
regression coefficients a and b can be calculated by [6]

Ne

S (1 — )t — 1)
a= i=1 = (3)
Z (xi - ,u'z)z
1=1
b=p, —ap 4

where p, and p, are the means of {z;} and {y;}, respectively,
given by

T3, —_Z Ui

€ i=1

)

and the normalization shall be performed for all of the data
points in the floating data set based on (1).

The accuracy of the method highly depends on the selection
of control genes. In addition to the predetermined control
genes, including housekeeping genes, we shall add more
control genes based on a reasonable heuristics that the genes
that are nondifferentially expressed should be considered as
control genes in normalization. Posed in this way, there is a
basic “chicken-and-egg” problem [7]. Before a good control
gene subset can be defined, expression levels of all genes need
to be reasonably normalized. Yet, this normalization is, after
all, the ultimate goal of computation.

We propose an iterative regression normalization algorithm to
solve this problem. First, solely based on the predetermined con-
trol genes such as housekeeping genes, we will conduct an initial
normalization to all data sets based on (1)<(5). Since an accu-
rate data analysis requires several repetitive cDNA hybridiza-
tions in microarray studies [8], starting from the whole data set,
we will then eliminate those genes from the control gene list
whose expressions have a large standard deviation across repli-
cations, namely, outliers, according to the criterion given by

1 & 1 <A (i
P Ti iy — —.’L’J —
p= > o miz(m

=1

1>' >a (6

for all genes, where m; is the number of replications for gene
7 in the experiment, x; ; is the expression level of gene ¢ in
the jth replication, y; is the mean of replications, and €; is a
predetermined threshold.

In our experiment, €; is determined as follows. For each ofthe
genes, the replications are normalized by its mean and the nor-
malized standard deviation is calculated. A mean standard de-
viation is then obtained by the sample average of the individual
normalized standard deviations. Our experience has shown that
€1 being two times of the mean standard deviation is appropriate
and effective. It should be noted that this criterion will also elim-
inate differentially expressed genes from the control gene list.
Thus, a gene will be selected as a control gene if its expression
level pair across reference and floating experiments satisfies

c2< /2?2 +y2 <e; and

logz;

-1
logy;

Seaa (D)
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Fig. 2. Example of control gene selection window. (a) Before and (b) after normalization.

where €2, €3, and €4 are the empirically predetermined thresholds
defining the subset of constantly expressed genes. It can be seen
that (7) defines a window function over the scatter plot. A typ-
ical window function is illustrated in Fig. 2. In particular, as we
have noted according to our experience, ratios can be very un-
stable when one (or both) of the signals is small or large. Thus,
we further eliminate unstably expressed genes from the control
gene list using the constraints defined by €2 and ¢3. Clearly, €4
provides the boundaries of a constantly expressed gene subset.
The algorithm first generates the interim scatter plot of the
data sets through the observations and the current parameter
estimates [(1)] and then updates parameter estimates using a
newly defined control gene subset [(3)~(5)]. The procedure cy-
cles back and forth between these two steps until it reaches a
stationary point where no significant change occurs to the con-
tent of the control gene subset. A summary of the major steps is
given as follows.
1) Based on predetermined control genes including house-
keeping genes, estimate initial values of a(® and 5(®) and
perform an initial normalization using (3)—(5) and (1),

where only one data set is used as a reference set and all

other data sets are considered as floating sets and shall be
normalized to the reference set.

2) Eliminate those genes from the control gene list whose
expressions have a large standard deviation across repli-
cations, according to the criterion given by (6).

3) Foreach of experiment pairs, construct a new control gene
subset by selecting additional control genes that satisfy
™.

4) Based on the newly constructed control gene subset,
estimate interim values of a™ and 0™ and perform
data normalization for each of the floating data sets using
(3)~(5) and (1), where m is the iteration index.

5) Repeat Steps 3) and 4) until the convergence (a(>) — 1
and b(*) — 0) is reached or no significant change occurs
to the content of the control gene subset.

The philosophy for estimating normalization coefficients and

identifying a control gene set is similar in spirit to the self-or-

ganization principle [9], [10]. The structure of window function
gates contributions to the control gene subset used to estimate
normalization coefficients such that possible oscillation during
algorithm convergence can be prevented. Specifically, the
window function defines a neighborhood of scatter centroid
to gating consistency contribution of the control gene subset
to normalization. By making the value ¢4 of the topological
window function decrease with time, the neighborhood is
initially very large and shrinks slowly to its final desired size
(e.g., a nearest neighbor structure). A popular choice for the
dependence of ¢4 on discrete time m is the exponential decay
[9]. In addition, the actual algorithm implementation concerns
the issue of numerical stability. We have applied a simple
dynamic programming technique to estimating normalization
coefficients, called a factoring-shifting (FS) procedure.

F-Step
ngklm)yi
atklm) :1—2 ®)
I
=1
xgk']m) = a(k]m)x‘gklm) (9)
S-Step
1 y
(Klm) _ = o Im)
b - ; [y, $ ] (10)
:C,Ek+1lm) =xgk'|m) + b(klm). (11)

where at each complete cycle of the procedure, we first use the
“old” set of floating data to determine the normalization factor
a™™) using (8) by setting b = 0 and simply rescale floating
data values using (9). These interim results a:z(-k ™) are then used
to obtain the normalization shift 5*I™) using (10) by setting
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a = 1 and further generate “new” values z." "™ of floating

data using (11). The procedure cycles back and forth until the
values of a{®I™) and b(I™) reach their stationary points.

In relation to previous work, the concept of using linear re-
gression analysis for microarray normalization can be traced
back to [4] and was further developed in [12] for iterative re-
gression in conjunction with control gene selection. Such ap-
proaches are based on several assumptions regarding the data
and can be considered as special cases of our framework [5].

The primary assumption is that for either the entire collection
of arrayed genes or some subset such as housekeeping genes, the
shift of the measured expression averaged over the set is zero
(e.g., b = 0) and the ratio of normalized expression pair aver-
aged over the set should be one [e.g., 1/n. 3o, (y:/az;) = 1].
Under these assumptions, there are basically three major ap-
proaches for calculating the normalization factor @ [S]. The first
simply uses the mean value of all the background-corrected sig-
nals. Normalization can be separately performed for each of
the data sets, without explicitly calculating a and selecting a
reference data set [15]. Specifically, if a raw data pair is de-

noted by ({z:}, {:}), normalization leads to ({z:/ 3 i<, z:},

{v:/ X 7=, ¥:}). By multiplying the pair with > ;<. v;, the re-
sult is equivalent to using (4), that is, ({az;}, {%:}), where
a=Y " y/>i,z;and b = 0. A second approach uses
simplified linear regression analysis, called linear regression
through the origin [6]. Consequently, a scatter plot of the nor-
malized data set pair should have a slope of one [5]. By set-
ting b = 0 in (1) and (2), the normalization factor is given
bya = 315, ziyi/ Yooe, 2. A third approach relies on the
assumption that, for control genes, the distribution of expres-
sion levels can be modeled and the mean of the ratio adjusted
to one [4]. An iterative procedure was developed to estimate a
by 1/n. Y 1<, (yi/2:), once again setting b = 0. It should be
noticed that some heuristic approximations have been made in
using these approaches, since, in general

Ne Re
> U DT .
=1

1= z 1 7
—rm—#d 2 (12
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=1 1==1
and
b#£0 (13)

while our method is presented as a standard linear regression
analysis without any approximation step.

III. EXPERIMENT AND DISCUSSION

In this section, we will provide experimental evaluation of our
new normalization method. This investigation has two related
strands. First, we will furnish examples demonstrating the use
of an iterative normalization scheme on real microarray data.

~ Here, we will use two different data sets. The first of these
involves within-class normalization of data from LCCI breast
cancer cell lines across replications. The second example in-
volves normalizing between-class breast cancer cell line data
from LCC1 against LCC9, whose phenotypes are known to be
different from LCCI.

In the second strand of our experiments, we will provide an
algorithm accuracy analysis. Here, we confine ourselves to the
linear regression variant of the normalization process. The aim
is to experimentally compare our iterative algorithm with the
performance of each of its components taken individually, thus
to demonstrate that the combined processing of both control
gene selection and transformation coefficient estimation yields
significant advantages over existing methods. In addition, we
would like to acknowledge that although the cell lines are not
fully representative of solid tumors in humans, their patterns of
gene expression profile are rich in information with respect to
drug resistance.

We obtained gene expression profiles from two breast
cancer cell lines. MCF7/LCC1 is an estrogen-independent but
antiestrogen responsive variant of the MCF-7 human breast
cancer cell line [14], [15]. An antiestrogen resistant variant
(MCF7/LCC9) was obtained by stepwise selection of MCF7/
LCCI cells against the steroidal antiestrogen ICI 182780
(trade name: Faslodex). MCF7/LCC9 cells have many of the
characteristics seen in antiestrogen-resistant human breast can-
cers and provide a novel model in which to study antiestrogen
resistance [14].

Gene expression profiles were obtained using the AtlasTM
Human Array c¢DNA expression microarrays (Clontech,
Laboratories, Inc., Palo Alto, CA). These microarrays are
produced on nylon filters and contain 588 target genes and
nine housekeeping genes. Briefly, total RNA was obtained
from independent cultures of MCF7/LCC1 and MCF7/LCC9
cells with the TRIzol reagent (Life Technologies, Grand Island,
NY). One ug of DNase-treated mRNA was primed with Clon-
tech’s cDNA Synthesis Primer mix and the product reverse
transcribed into radiolabeled cDNA with [—-32P] dATP (Amer-
sham Life Science Inc., Arlington Heights, IL). Probes were
purified, denatured, and both C0t-1 DNA and 1 M NaH2PO4
(pH 7.0) added to the denatured probe. Each microarray
was prehybridized with 5-ml ExpressHyb buffer and 0.5-mg
denatured DNA from sheared salmon testes. Microarray filters
were hybridized overnight with the appropriate [—32P]-labeled
¢DNA probe. The array was extensively washed and sealed in
plastic, with signals detected by phosphorimage analysis using
a Molecular Dynamics Storm phosphorimager (Molecular Dy-
namics, Sunnyvale, CA). Digitization of these signals provided
numerical values representing the signal for each gene.

Generally, it has been assumed that, under variable condi-
tions, the expression of housekeeping genes remains unchanged.
Hence, high-throughput differential expression data can rely on
these genes for data normalization. However, recent data indi-
cate deviation from this concept {11].

To assess the effectiveness of housekeeping genes in nor-
malizing cDNA microarray data, a normalization based on
single linear regression is performed using only the set of nine
housekeeping genes suggested by CLONTECH. The scatter
plots of normalization results are given in Fig. 3. Although
log—log-based scatter plots are widely used, we have decided to
use original scaled scatter plots since our numerical simulations
have shown possible misleading perceptions from the “dis-
torted” shape of actual data distribution. Particularly focusing
on breast cancer, we have observed significant variations in
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(2) Scatter plot of within-class normalized microarray data based on nine housckeeping genes. (b) Scatter plot of between-class normalized microarray

data based on nine housckeeping genes. (Circle: before normalization; dot: after normalization.)
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Fig.4. Example of diffcrential expression of housekeeping genes (red dots, where the dashed lines arc the partition edges of the window functions). (a) Within-class

and (b) between-class.

the expression of these housekeeping genes. For example,
differential expression was observed between LCC1 and LCC9.
See Fig. 4, where the data sets were normalized using the first
method discussed above. This fact was observed from all of
our experiments and shared by the same observation reported
in [11]. Therefore, selection and use of housekeeping genes
for normalization of differential expression data from various
biological models should be approached with caution [11].
Since evaluation requires comparison with existing methods,
we have implemented all three major approaches and applied
these to the same data sets. In this experiment, all genes are
considered as control genes and used in the calculation. Our
measure of normalization accuracy is the MSE defined by (2)
over the selected control gene set. The result of using the first

method is given in Fig. 5, where a = 31, 4/ D is) @i = 9.9
and b = 0; an MSE of 8549 is reached. In the second method,
normalization is based on a linear regression through the origin,
ie,a = Yo zyif Y os, 2 that is most close to the cor-
rect formulation. The corresponding result is shown in Fig. 6,
where ¢ = 5.0 and b = 0. A lower MSE of 3905 is ob-
tained, consistent with our theoretical expectation. In Fig. 7,
we show the normalization result using the third method, i.e.,
a = 1/n.3 0 (vi/x:). As predicted, a biased estimate of the
expression ratio is obtained, leading to a high MSE of 20 728
with @ = 18.

These comparisons clearly indicate that the three existing ap-
proaches are not equivalent, as shown by both our experimental
results and the theoretical justification of (12). To illustrate the
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Fig.6. Scatter plot of normalized microarray data using the cxisting method 2.
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Fig. 7. Scatter plot of normalized microarray data using the existing method 3.
(Circle: before normalization; dot: after normalization.)

impact of using the whole gene set as control gene set and using
a dynamic programming technique on the normalization accu-
racy, we applied method 2 to the differential expression between
LCC1 and LCC9. The scatter plot is given in Fig. 8. The corre-
sponding MSE in this case is 6527, compared to the previous
MSE of 3905. An increase in MSE suggests that, as samples
become more divergent, a good normalization may be achieved
using a subset of constantly expressed genes rather than a global
normalization (e.g., using all genes) [3]. We then used the FS
procedure to estimate both a and b. This additional step further

At Allthe genes s contrat gene

"
1S

o
s}

Leciny

1 15 2 .5

Leen A’

Fig. 8. Scatter plot of normalized between-class microarray data using the
cxisting mcthod 2. (Circle: before normalization; dot: after normalization.)
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Fig. 9. Scatter plot of normalized within-class microarray data based on
selected control gene subset using a static window function. (Circle: before
normalization; dot: aftcr normalization.)

reduced the MSE to 6438, but this reduction is probably not sig-
nificant.

To explore the effect of control gene selection, we first per-
formed an initial linear regression using the whole gene set. Four
different window functions were configured to select control
gene subsets where ez < 7 < €3 and ¢ is the sector angle of the
window function. Based on the selected control genes, we then
applied a single linear regression to normalizing within-class
samples. A numerical comparison on the normalization accu-
racy of using different control gene subsets is conducted, as re-
ported in Table 1. The main feature to note from these results
is that, for different window functions, a stable estimate of the
scaling factor a is obtained, while the shifting offset b varies sig-
nificantly from case to case. In addition, the MSEs of normaliza-
tions in all three cases are comparable (i.e., 5632~5796). The
scatter plot of the best normalization result is shown in Fig. 9.

We further applied the same procedure to processing be-
tween-class samples and observed similar data characteristics.
The scaling factor in this case is about a = 44, while b varies
substantially. Not surprisingly, an increase in MSE is observed
(i.e., 6754~7384). Numerical analysis with different window
functions shows the capable nature of the approach, since
the interim estimate of linear regression coefficient is very
stable with a satisfactory low MSE. Indeed, the robustness of
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TABLE I
NUMERICAL COMPARISONS OF NORMALIZATION RESULTS BASED ON A DESIGNATED SUBSET OF CONTROL GENES WITH DIFFERENT WINDOW CONFIGURATIONS
Window(x10°) | 7 € (1,4),0=F | r€(L,4),¢=3F |r€(3,6),¢0=5| r€(16,29).¢=3%
Coefficient a=76,6=8311|a=77,6=2885|a=77,6=803 |a="7.70b=-11378
MSE 5633 5676 5693 5796
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Fig. 11.  Scatter plot of initial normalizcd within-class microarray data based

Fig. 10. Scatter plot of normalized between-class microarray data based on
sclected control gene subsct using a static window function. (Circle: before
normalization; dot: after normalization.)

the gene selection step has been successfully discovered in
all our experiments. A typical scatter plot of between-class
normalization results, using a window-based control gene
selection, is given in Fig. 10.

Next, we provide an illustration of the iterative properties
of our normalization algorithm. The sequence in our experi-
ment shows the iterative recovery of the full linear regression
matching. In this within-class case, 10000 < r < 24000
and ¢ = 7/2, n/4, n/8, w/16, w/32, w/48. Each window
shrinking step is mixed with one of the FS steps using the cur-
rent set of recovered data points. The initial parameters are esti-
mated based on the whole gene set. The normalization process
converges to a good solution after six iterations. Figs. 11 and 12
show the scatter plots of initial and final normalization results.
Once the algorithm has converged, the consistency of the control
gene selection is significantly improved. Moreover, there are no
erroneous matches between control genes for the last two adja-
cent iterations. The final control gene subset contains 37 genes.
Finally, the MSE of 3892 is in good agreement with the corre-
sponding results of the existing methods.

We next considered the iterative normalization for between-
class samples. As a step toward improving the performance of
microarray data normalization, we have put considerable effort
into conducting various studies and developing reliable control
gene selection and linear regression techniques. More precisely,
we aim to perform an unsupervised normalization when con-
fronted with unreliable housekeeping genes. Experience sug-
gested that our newly proposed method can achieve this goal.
We applied our algorithm to the differential expression between
LCC1 and LCC9. In this between-class case, 10000 < r <
24000 and ¢ = n/4, n/8, m/16, 7 /48. As before, the initial
parameters are estimated based on the whole gene set. The nor-
malization process converges on a good solution after only four

on sclected control gene subset using a dynamic window function. (Circle:
before normalization; dot: after normalization.)
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Fig. 12. Scatter plot of final normalized within-class microarray data based on
sclected control gene subset using a dynamic window function. (Circle: before
normalization; dot: aftcr normalization.)

iterations. Figs. 13 and 14 show the scatter plots of initial and
final normalization results. The final control gene subset con-
tains 43 genes, and a stable and satisfactory MSE of 6523 is
reached.

Finally, we used our previously developed the VISDA
algorithm to display the expression patterns of different cell
line samples in the gene expression space [13]. All data were
normalized using the new method. For a molecular analysis
of breast cancer, the profile of microarray expression is the
molecular signature of interest. The representation of each
sample is described as a point in a d-dimensional gene expres-
sion space in which each axis represents the expression level |
of one gene. The presence of well-separated sample groups
implies that the representations of samples within the same
group are close to each other in this gene expression space but
distant from those of other samples. Thus, the representations
of phenotype-specific samples form clusters. Fig. 15 shows a
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Fig. 13. Scatter plot of initial normalized between-class microarray data
based on sclected control gene subset using a dynamic window function.
(Circle: before normalization; dot: after normalization.)
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Fig. 14. Scatter plot of final normalized between-class microarray data based
on selected control gene subsct using a dynamic window function. (Circle:
before normalization; dot: after normalization.)
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Fig. 15. Projection of 597-genc dimensions onto top thrce principal discrimi-
nant component spaccs bascd on Fisher’s scatter matrix measurc of the
scparability of patterns. With an accurate data normalization, visual cxploration
reveals phenotype-specific sample clusters in gene expression space.

projected display of 597-gene dimensions into the top three
principal discriminative component spaces, based on Fisher’s
scatter matrix [9]. With an accurate data normalization, visual
exploration reveals three phenotype-specific sample clusters
in gene expression space. Using the trace of Fisher’s scatter

matrix as a measure of the separability of patterns, our new
normalization method achieved an improved performance with
respect to the existing methods.

One important consideration with the present approach is the
measure of quality in data normalization [11]. This is not a glam-
orous area, but progress in it is critical for the future success of
data normalization [12]. What is the correct control gene set for
a direct normalization of between-class data sets? How effec-
tive was a particular normalization method? Did the succeeding
analysis come to the correct conclusion? Benchmark criteria as-
signment in data normalization are very different and difficult
[5]. We believe that in data normalization, there is currently no
objective measure of quality, and so it is difficult to quantify
the merit of a particular data normalization technique. The ef-
fectiveness of such a techniques is often highly data-dependent.
However, - we would expect this iterative normalization method
to be an effective tool in many gene microarray applications.
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Association of Interferon Regulatory Factor-1, Nucleophosmin, Nuclear Factor-«B,
and Cyclic AMP Response Element Binding with Acquired Resistance

to Faslodex (ICI 182,780)"
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ABSTRACT

To identify genes associated with survival from antiestrogens, both
serial analysis of gene expression and gene expression microarrays were
used to explore the transcriptomes of antiestrogen-responsive (MCF7/
LCC1) and -resistant variants (MCF7/LCC9) of the MCF-7 human breast
cancer cell line. Structure of the geme microarray expression data was
visualized at the top level using a novel algorithm that derives the first
three principal components, fitted to the antiestrogen-resistant and
-responsive gene expression data, from Fisher’s information matrix. The
differential regulation of several candidate genes was confirmed. Func-
tional studies of the basal expression and endocrine regulation of tran-
scriptional activation of implicated transcription factors were studied
using promoter-reporter assays.

The putative tumor suppressor interferon regulatory factor-1 is down-
regulated in resistant cells, whereas its nucleolar phosphoprotein inhibitor
nucleophosmin is up-regulated. Resistant cells also up-regulate the tran-
scriptional activation of cyclic AMP response element (CRE) binding and
nuclear factor kB (NFxB) while down-regulating epidermal growth factor
receptor protein expression. Inhibition of NFxB activity by ICI 182,780 is
lost in resistant cells, but CRE activity is not regulated by ICI 182,780 in
either responsive or resistant cells. Parthenolide, a potent and specific
inhibitor of NF«B, inhibits the anchorage-dependent proliferation of an-
tiestrogen-resistant but not antiestrogen-responsive cells. This observation
implies a greater reliance on their increased NF«B signaling for prolifer-
ation in cells that have survived prolonged exposure to ICI 182,780,

These data from serial analysis of gene expression and gene microarray
studies implicate changes in a novel signaling pathway, invelving inter-
feron regulatory factor-1, nucleophosmin, NFxB, and CRE binding in cell
survival after antiestrogen exposure. Cells can up-regulate some estrogen-
responsive genes while concurrently losing the ability of antiestrogens to
regulate their expression. Signaling pathways that are not regulated by
estrogens also can be up-regulated. Thus, some breast cancer cells may
survive antiestrogen treatment by bypassing specific growth inhibitory
signals induced by antagonist-occupied estrogen receptors.
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INTRODUCTION

ERs’ are nuclear transcription factors, their activities being affected
by the nature of the ligand bound and the pattern of genes/proteins
expressed within cells (cellular context; Ref. 1). Antiestrogens com-
pete with endogenous estrogens for activation of ER. and induce both
cell cycle arrest and apoptosis in responsive cells (2). Neither the
genes regulated by antiestrogens that signal to apoptosis nor those
genes that confer an acquired antiestrogen resistance have been iden-
tified. Nonetheless, antiestrogenic drugs are effective in both prem-
enopausal and postmenopausal breast cancer patients, and in the
metastatic and adjuvant settings (3). The most widely used antiestro-
gen in current clinical practice is the triphenylethylene TAM. Clinical
experience with this drug likely now exceeds 10 million patient years.
When patients with metastatic disease are selected for treatment based
on the ER and PgR content of their tumors, responses are seen in up
to 75% of tumors expressing both receptors (2). TAM also reduces the
incidence of ER-positive breast cancers in high risk women (4).

Other antiestrogens have emerged recently, most notably the ben-
zothiophene Raloxifene and the steroidal ICI 182,780 (Faslodex).
Both drugs appear to have significant clinical activity and may have
better toxicological profiles when compared with TAM (2). Faslodex
has significant activity in TAM-resistant patients (5), consistent with
data obtained previously with TAM-resistant human breast cancer
cells selected in vitro (6).

Despite the utility of antiestrogens, most tumors that initially
respond to these drugs will recur and require alternative systemic
therapies (2). Unfortunately, the precise mechanisms that confer
tesistance remain unknown. Change to an antiestrogen-stimulated
phenotype has been described in some animal models (6, 7). This
phenotype may occur in up to 20% of breast cancer patients but a loss
of responsiveness to antiestrogens may be the more common pheno-
type (2). The expression of mutant ER proteins and splice variants has
been reported but the functional role of these in endocrine resistance
remains unclear (2). Most tumors acquiring antiestrogen resistance do
so while retaining expression of ER (8). Thus, whereas lack of ER
expression is a major form of de novo antiestrogen resistance, other
mechanisms must be active in most instances of acquired resistance
(2). The persistent expression of ER in tumors with acquired resist-
ance suggests that some cells expressing this phenotype may either
require ER expression and/or reflect the altered expression of other~
wise estrogen-regulated genes.

Because ER-mediated transcription is directly affected by anties-
trogens, we initially hypothesized that antiestrogen resistance might
include perturbations in the patterns of expression and/or regulation of

7 The abbreviations used are: ER, cstrogen receptor; CRE, cyclic AMP response
clement; CCS-IMEM, improved minimal cssential medium suppicmented with 5% char-
coal calf stripped serum; EGF-R, epidermal growth factor receptor; IRF-1, interferon
regulatory factor-1; NPM, nucleophosmin; PgR, progestcrone receptor; SAGE, scrial
analysis of genc cxpression; TAM, Tamoxifen; XBP-1, X-box binding protein-1; FACS,
fluorescence-activated cell sorting: NFxB. nuclcar factor kB; EGR-1, early growth
responsc factor-1; TNFa, tumor necrosis factor a.
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a subset of all of the ER-regulated genes (1). To address this hypoth-
esis, we first generated a novel series of human breast cancer variants
from the MCF-7 human breast cancer cell line. These cells have
different growth requirements for estrogen and exhibit differential
sensitivities to TAM and ICI 182,780 (9-11). In this study, we focus
on MCF7/LCCI cells {estrogen-independent, TAM-tesponsive, and
ICI 182,780 responsive) and MCF7/LCC9 cells (estrogen-indepen-
dent, ICI 182,780 resistant, and TAM cross-resistant; Ref. 11). Be-
cause the cells exhibit comparable cell cycle profiles® and are both
MCEF-7 variants, we can exclude the altered expression of genes
related solely to differences in both genetic background and cell cycle
distribution. A direct comparison of these respective transcriptomes
should identify genes associated with survival from long-term anti-
estrogen exposure.

Several techniques are now available to explore the transcriptomes
of tumors and experimental models. However, the most effective
approach remains a matter of debate (12). Studies in breast cancer
have been limited, most simply attempting to identify the genes
expressed in breast cancers. For example, a recent study by Perou
et al. (13) explored data from excisional breast biopsies from 42
individuals. Gene clusters, identified by exploration of the data struc-
ture, include those associated with ER, HER-2, and IFN-induced
genes. A similar cluster of IFN-regulated genes was identified in the
breast cancer cell lines included in the NIH drug screening program

(14). Studies comparing the gene expression profiles of specific breast

cancer phenotypes include an examination of histologically different
samples from a single breast cancer lesion (15) and a preliminary
analysis of a TAM-stimulated xenograft model (16). None of these
reports directly addressed either the function or potential role of the
specific genes identified. We have used two different but complemen-
tary approaches, SAGE and gene expression microarrays. These ap-
proaches would not be expected to provide identical data because not
all of the genes identified by SAGE are on the microarrays, some
genes identified on the cDNA arrays may be confounded by cross-
hybridization to homologous RNAs, and the ability to detect signifi-
cant differences between the SAGE databases is affected by the
relative abundance of the tags and the size of the databases. We
approached both technologies as means to sample the transcriptomes
of MCF7/LCC1 and MCF7/LCCS9 cells, and to generatc data that
would allow us to begin testing our hypothesis implicating estrogen-
regulated genes in antiestrogen resistance. We now show that cells can
survive prolonged antiestrogen treatment by altering the expression,
patterns of regulation, and functional activation of specific estrogen-
regulated genes.

MATERIALS AND METHODS

Cell Lines. MCF7/LCCI cclls were derived from the cstrogen-dependent
MCF-7 human breast cancer cell line after sclection for growth in ovariccto-
mized nude mice (9, 17). MCF-7/LCC9 cclls were obtained by an in vitro
stepwise sclection of thc estrogen-independent but anticstrogen-responsive
MCF7/LCCI cells against the steroidal antiestrogen ICI 182,780 (Faslodex).
MCF7/LCC9 cells arc ICI 182,780 resistant and TAM cross-resistant, express
ER and PgR, and exhibit an cstrogen-independent but responsive phenotype
(11). MCF7/L.CC1 and MCF7/LCC9 cells werc routincly passaged in Im-
proved Minimal Essential Medium without phenol red (Biofluids. Bethesda,
MD) supplemented with 5% CCS-IMEM. Serum was stripped of endogenous
estrogens as described previously and is estimated to contain <10 fM estrogen
(18). Vchicle for all of the hormone/antihormone treatments was cthanol (final
concentration <0.1% v/v). All of the cell cultures were maintained at 37°C in
a humidificd 5% CO,:95% air atmospherc and shown to be frce of contami-
nation with Mycoplasma species as determined by solution hybridization to

#R. Clarke. unpublished observations.

Mycoplasma-specific, radiolabeled, RNase riboprobes (Gen-Probe Inc., San
Diego, CA). : '

SAGE Analyses. SAGE was performed as described previously (19).
Polyadenylic acid mRNA was harvested from cells using biotin labeled-
oligodcoxythymidylic acid magnetic beads (Promega PolyATract System 1000
kit; Promega, Madison, WI) and treated with DNase I enzyme to remove any
contaminating DNA. mRNA (5 pg) was converted to double-stranded cDNA
using the Life Technologies, Inc. cDNA Synthesis kit (Life Technologies, Inc.,
Rockville, MD). Biotinylated cDNA was completely cleaved with Nia III and
the 3'-cnd digested fragments extracted with magnetic streptavidin beads. The
c¢DNA was cvenly divided and ligated. one half to linker A and the other half
to linker B (19). Cleavage of the cDNA by BsmF1 produced 11-13 bp oligo
DNA tags with linkers, which were blunt-ended with T4 polymerase. Linkers
A and B were ligated together to form ditags, which were then amplified by
PCR using primers to linkers A and B. Ditags (22-26 bp) werce gel purified and
ligated into concatenated polytags. The polytags were purificd and cloned into
the Sphl-digested pZeorl vector, which was transferred to competent
TOP1OF’ cells by clectroporation. Positive clones were selected overnight at
37°C for growth on low-salt Luria-Bertani bacterial plates supplemented with
Luria-Bertani-Zeocin (50 pg/ml) and isopropyl B-D-thiogalactopyranoside (1
myM). Colonies werc screencd for plasmids containing appropriate inscrts by
sizc fractionating PCR products, obtained using M13 forward and reverse
primers, in agarosc gels. PCR products containing concatamers of >600 bp
were purified and sequenced.

Characteristics of the SAGE databases are shown in Table 1. We compared
the MCF7/LCC1 and MCF7/L.CC9 databases, using the SAGE version 1.00
softwarc (kindly provided by Dr. K. W. Kinzler, Johns Hopkins University,
Baltimore, MD), to identify putatively differentially expressed genes. Only a
representative sample of thesc can be presented. The genes presented in
Table 2 were primarily selected bascd on: (a) fold difference =2-fold; (b) that
the Tags compared should represent <2 genes; and (¢) that a Tag found in
either the MCF7/LCC1 and/or MCF7/LCC9 SAGE librarics must represent
=0.10% of thc databasc. Evidence that a genc was alrcady known to be
expressed in breast cancers also was considered. None of these criteria were
considered an absolute requirement for gene sclection. Whereas 2-fold was
selected as the cutoff, biologically critical events can be controlled by genes
that exhibit a fold regulation as small as 50% (20). As described recently by
Man et al. (21), x? analyses were used to compare the proportions of specific
tags in cach databasc.

RNA Isolation, Generation of Probes, and Hybridization of Gene Mi-
croarrays. Each probc was generated from an independent cell culture, each
culturc being grown on a different day but using identical ccll culture condi-
tions. Six MCF7/LCC1 and five MCF7/LCC9 ccll cultures were used. RNA
was isolated from proliferating, subconfluent monolayers of each cell line
using the TRIzol reagent (Lifc Technologies. Inc., Grand Island, NY). RNA
quality was determined by standard spectroscopic and gel clectrophoresis
analyscs.

Probes for the Clontech Atlas genc microarrays (Clontech, Palo Alto, CA)
were made as described by the manufacturer. Briefly, 1 ug of Dnase-treated
mRNA was primed with the Clontech ¢cDNA Synthesis Primer mix. The
product was reverse transcribed into radiolabeled cDNA with [y->?P]dATP
(Amecrsham Lifc Science Inc., Arlington Heights, IL), and the reaction incu-
bated at 50°C for 25 min and terminated by adding 0.1 M EDTA (pH 8.0).
Radiolabcled cDNA was purified and cluted through a NuclcoSpin Extraction
Column (centrifuged at 14,000 rpm). The cDNA probe was denatured with 1

Table | Characteristics of the SAGE libraries from MCF7/LCCI and

MCF7/LCCY cells

Gene

Characteristics of SAGE libraries Tags” hits
Tags scquenced from MCF7/LCCI cells 12.816" 5.783 1
Tags sequenced from MCF7/LCC9 cells 11,1097 1.170 2
Number of Tags identificd 10,518 208 3
Number of known Tags® 7.221 38 4
Number of unknown Tags 3,297 10 5

“ Number of Tags representing a corresponding number of gene hits, e.g., 5,783 Tags
arc specific for single genes, whereas 208 Tags could identify up to 3 genes cach.

" Number of Tags in cach SAGE databasc.

¢ Includes exp i q e tags.
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Table 2 Differentially expressed genes identified in the MCF7/LCCI and MCF7/LCC9 SAGE libraries

Putative gene” -Unigene no. MCF7/LCC1 MCF7/LCC9 Differencc” P Gene function
N-ras-related gene Hs.260523 2 20 10-fold <0.001 G-protcin
Cathepsin D Hs.343475 7 © 34 5-fold <0.001 Protcase involved in tumor invasion
XBP-1 Hs.149923 7 25 4-fold <0.001 Transcription factor
Prefoldin 5 Hs.288856 6 21 4-fold 0.002 Chapcronc for unfolded proteins
HSP-27 Hs.76067 23 55 2-fold 0.001 Stress response protein
Vit B-12-binding protein Hs.2012 17 37 2-fold 0.002 Vitamin-binding protecin
NPM Hs.9614 10 14 1.5-fold >0.05 Oncogenic nucleolar protein
L14 Hs.738 13 2 6-fold 0.021 Ribosomal protein
Death-associated protein-6 Hs.336916 11 2 6-fold 0.049 Apoptosis-associated protein
EF-y Hs.2186 22 6 4-fold 0.014 Translation clongation factor
Ferritin, hcavy polypeptide-1 Hs.62954 54 16 3-fold <0.001 Iron-binding protcin

“ The gene designations arc considered putative, although the identity of most genes designated in this fashion have been shown to be correct. Thesc genes include those Tags where:
(a) the fold difference is =2-fold; (8) the Tag could represent =2 genes: and (¢) represents 0.1% of either the MCF7/LCC] and/or MCF7/LCC9 SAGE library.
# predicted fold difference in gene expression between MCF7/LCCH vs. MCF7/LCC9 cells. .

¢ Obtained by xz analyscs; P cstimated to 3 significant figurcs.

4 NPM (not statistically significant) is shown becausc we know it to be both estrogen regulated and associated with TAM treatment in patients.

M NaOH and 10 mMm EDTA, and incubated at 68°C for 20 min. cy#-1 DNA and
1 M NaH,PO, (pH 7.0) were added to the denatured probe, and incubated at
68°C for an additional 10 min.

Each Atlas Array (Clontech) was prehybridized with 5 ml of ExpressHyb
buffer (Clontech) and 0.5 mg of denatured DNA from shearcd salmon testes at
68°C for 30 min with continuous agitation. The ¢cDNA probe, prepared as
described above, was then added and allowed to hybridizc overnight. The array
was washed four times with 2X SSC containing 1% (w/v) SDS for 30 min at
68°C and once with 0.1 X SSC containing 0.5% (w/v) SDS for 30 min at 68°C.
One final wash was performed with 2X SSC for 5 min at room tempcrature.
The Atlas Array was scaled in plastic and signals detccted by phosphorimage
analysis using a Molecular Dynamics Storm phosphorimager (Molccular Dy-
namics, Sunnyvale, CA). Each filter was used only once.

Measuring NPM and EGF-R Protein Levels. Established methods were
used for performing and quantifying Western analyscs of NPM (22, 23).
Briefly, 10 ug of protein was loaded onto an SDS-PAGE gel and fraction-
ated under reducing conditions [5% (v/v) B-mcrcaptocthanol]. To account
for within-gel differences, samples were loaded in a random sequence onto
cach gel. Proteins were blotted onto nitrocellulose membrane and the blots
probed with an anti-NPM monoclonal antibody (kindly provided by Dr.
Pui-Kwong Chan, Baylor College of Medicine, Houston, TX; Ref. 24).
After transfer to the membranes, equal protein loading was confirmed by
staining the nitrocellulosc with Ponceau S as is widely reported (22, 23,
25). Any material remaining in the gels were stained by Coomassie Blue.
This approach provides an adequate and appropriatc estimatc for equiva-
lence of protein loading (22, 23, 25). Immunoreactivity was visualized
using a horseradish peroxidase-linked goat antimousc IgG and the en-
hanced chemiluminescence detection system (Amersham Life Science
Inc.). Chemiluminescence was densitometrically mcasured using a Quan-
tity One Scanning and Analysis System (pdi, Huntingdon, NY).

EGF-R is expressed at low levels in MCF-7 cells and cannot readily be
detected/quantified by Western blot. Consequently, we measured immunofluo-
rescently labeled EGF-R protein by FACS. For cach cell linc, EGF-R immu-
nofluorescence was performed by rinsing 5 X 10 cells once in PBS and
pelleting cclls by centrifugation at 1000 rpm for 5 min at room temperature.
Cell peliets were resuspended in 100 ! of an anti-EGF-R mouse monoclonal
antibody that recognizes the extracellular domain of the receptor (EGF-R
antibody-1; NeoMarkers, Lab Vision Corp., Fremont, CA; 200 ug/ml diluted
1:50 in PBS), and incubated at room tempcrature for 1 h. Cell pellets were then
resuspended in 1:50 dilution of R-phycocrythrin-conjugated goat antimousc
IgG-2a (CALTAG Laboratories, Burlingame, CA) and incubated in the dark
for 30 min. After rinsing in PBS, cells were again pclleted, fixed by resus-
pending in 1% paraformaldehyde, and fluorescence measured by FACS.
Control cclls were treated either with secondary antibody alone or with no
antibody. FACS was performed on a FACStar™* flow cytometer (Becton-
Dickinson, Mountain Vicw, CA) at 488 nm.

RNase Protection Analysis of IFN Regulatory Factor-1 mRNA Expres-
sion. Total RNA was isolated using the TRIzol reagent (Lifc Technologies,
Inc.) according to thc manufacturer’s instructions. The IRF-1 riboprobe was
made by in vitro transcription of a 360-bp fragment of thc IRF-1 cDNA. The
36B4 loading control riboprobe was similarly obtained from a 220-bp fragment

of the 36B4 cDNA (17). Riboprobes were labeled by the addition of [*2PJUTP
(Amersham Life Sciences Inc.) in the transcription buffer. To achieve bands
for the two genes with similar intensitics, the 36B4 riboprobc was made with
a specific activity of ~20% that of the IRF-1 riboprobe. The RNase protection
assays were performed as described previously (26). Bricfly, total RNA (30
1g), the IRF-1 riboprobe, and the 36B4 riboprobe were hybridized overnight
at 50°C. After digestion with RNasc A, the protected fragments were size
fractionated on 6% acrylamide Tris-borate EDTA-urea minigels (Novex, San
Diego, CA). The gels were dricd and the respective signals quantified by
phosphorimager analysis (Molccular Dynamics).

Estimation of the Transcriptional Activation of CREs and NF«B. Two
commercially available promoter-reporter assays were used to measure NF«B
and CRE transcriptional activities. Experiments were performed as described
by the manufacturer (Stratagene, La Jolla, CA). Briefly, firefly luciferase
reporter constructs, under the control of the appropriate enhancer elements and
trans-activator constructs, were provided in the PathDetect in vivo signal
transduction pathway cis-reporting system (Stratagenc). Cells were grown to
90% confluence in 5% CCS-IMEM medium and sceded at 8 X 10* cells into -
each well of 24-well tissue culture dishes. After incubation for 12-24 h, cells
were transiently transfected with the appropriate plasmids using the Qiagen
Superfect transfection rcagent as described by the manufacturer (Qiagen,
Valencia, CA). The ratio of plasmid to Superfect reagent was 250 ng:1 ul, with
a transfection time of 2.5 h.

Estrogen (5 nM) and IC1 182,780 treatments (10 nM) were administered for
48 h after transfection in CCS-IMEM. Transfected cells were harvested and
firefly luciferase activity measured using the Stratagene assay system. Activity
is expressed in rclative light units from a 20-ul samplc as detected by
luminometry. Each measurement is from duplicate samples, independent ex-
periments being repeated on different days. Normalization of transfection
efficiency was made to the Renilla luciferase reporter construct, under the
control of the cytomegalovirus promoter (Promega). The Renilla luciferase
assay was performed using the Promega Dual-luciferase reporter assay system.

Assessment of Growth Response to Parthenolide. MCF7/LCC1 and
MCF7/LCC9 cells were plated in 96-well tissuc culturc platcs and incubated
for 24 h in 0.2 ml of 5% CCS-IMEM. Medium was removed and replaced with
fresh 5% CCS-IMEM containing either vehicle (0.1% DMSO) or parthenolide
(300 nM and 600 nM). Cells were refed every third day with thc appropriate cell
culture medium. Cell growth was determined on day 6, using a crystal violet
assay where dye uptake is directly related to ccll number (27). Cells were
incubated for 30 min with crystal violet stain [0.5% (w/v) crystal violet in 25%
(v/v) methanol] at 25°C. Unincorporated stain was removed with deionized
water and the cells allowed to dry at room temperaturc. Incorporated dye was
extracted into 0.1 mi of 0.1 M sodium citrate in 50% (v/v) cthanol for 10-15
min at room temperature. Absorbance was read at 570 nm using a Molecular
Devices V., kinetic microplate reader.

Statistical Analyses and Analysis of Gene Expression Microarray Data.
t tests were used to compare control and experimental groups as appropriate for
the RNase protection, Western blot, promoter-reporter, and cell proliferation
assays. All of the tests were two-tailed, with statistical significance established
at P = (.05, unless stated otherwise.

For the genc array studics, background signal was cstimated locally and
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subtracted from the signal obtained from its target cDNA, producing the
background-corrected data. These corrections were done using the algorithms
in Pathways 4.0 (Rescarch Genetics Inc.. Huntsville, AL). Background-cor-
rected data were normalized to account for diffcerences in probe-specific
activity, hybridization, and other variables among replicates (28). Normaliza-
tion was accomplished using the mean value of all of the background-corrected
signals on each array.

Different approaches have been used to analyze data from gene array
studies. Some methods arc simply based on fold-regulation (29). others arc
more statistically bascd (16, 30), and/or apply an informatics-based exploration
of data structurc (31, 32). The optimal approach remains a subject of consid-
crable debate (30). As with most gene microarray studies, our data set is high
in dimensionality (597 dimensions) but the number of replicates is limited by
the resource-intensive nature of the technology. The rclatively few replicates
limits the applicability of normal mixture models and other analyscs that can
operate in high dimensional data space (33, 34) and oftcn generates noisy data
scts.

Previously, we have reported a hierarchical visualization algorithm that can
reveal all of the major aspects of the multimodal data points, which concur-
rently exist in a high dimensional gene expression space (35, 36). Using this
algorithm, our data can be projected from 597 dimensions to two or threc
dimensions (multidimensional scaling). This is accomplished by respectively
deriving the first three principal components fitted to the anticstrogen respon-
sive (MCF7/LCC1) and resistant MCF7/LCC9) gene expression data (Fig. 1).
Thus, we evaluate the data structure subsets visually and assess whether these
contain differentially expressed genes that may contribute to the respective
phenotypes.

Because we can visualize data structure, our next priority was to identify a
simple. supervised approach for reducing the dimensionality of the data with-
out affecting its structure. Thus, we applied geometric and simple descriptive
statistical approaches to the normalized data before and after a logarithmic
transformation of these data. As noted previously, the distribution of the
expression data for cach gene is unknown (30), and it is unclear whether these
violate the normal distribution required for paramectric analyscs. Indecd, it
seems likely that the distribution assumption required will be normal for some
genes and not for others. Whereas most investigators analyze data transformed
by a logarithmic function, those genes with valucs that appear- normally

' A

Fig. 1. Visual represcntations of the structure of the multidimensional gene microarray
data. 4, three-dimensional representation of 597 dimensions (&, MCF7/LCC1; O, MCF7/
LCC9) where the top three principal components capturc 81.2% of thc cumulative
variance in the data. B, three-dimensional representation of 7 dimensions (data from Table
3) where the top three principal components capture 98.9% of the cumulative variance in
the data. Axes represent the first three principal components derived from the gene
expression data (79, 80). Plots arc rotated to provide the optimal visualization. In both
plots, a planc is shown demonstrating the lincar scparability of the MCF7/LCCl (n = §)
and MCF7/LCC9 (r» = 4) gene expression profiles.

distributed before transformation may no longer have this distribution once
transformed.

To be inclusive, we used simple statistics (¢ tests) to explore the data. The
inflated type-1 error from multiple comparisons should ovcrestimate (falsc
positive) significant differences. We considered this preferable to a high
incidence of falsc-negative cstimates, which would lead to the exclusion of
potentially informative genes. The inclusion of uninformative genes (false
negatives) is less problematic at this stage of the exploration. We used
Student’s ¢ test, a ¢ test for unequal variance (assumes normal distribution) and
the nonparametric (distribution-free) Wilcoxon signed rank test. Logarithm
transformed and nontransformed data were explored. This approach is similar
to using a F test as described recently by Hedenfalk ez al. (37).

¢ test results were evaluated and candidate genes selected with which to
reconstruct a lower dimensional data set that should rctain most of the infor-
mation apparent in the top level visualization. Howcver, the ¢ test results were
only one of several criteria used to guide gene selection, and only a subset of
those genes that appear to be differentially regulated arc presented. These
genes were selected by comparing the results of 7 tests on logarithm trans-
formed and untransformed data, fold-regulation (~2-fold or greater was se-
lected because this difference is likely to be confirmed in independent analy-
ses), the distribution of the background-corrected and normalized data for cach
gene (some genes appeared strongly differentially regulated but did not gen-
crate statistically significant differences because of hetcrogencity in the data),
and the probable relevance to breast cancer of each gene.

Where the gene subsets (reduced dimensional data) provide a reasonable
description of the entire expression data, the replicate profiles of the resistant
and responsive cells should exist in separable data space (35, 36). Furthermore,
if the profiles arc adequately defined by a small. rational gene subset, some of
its members likely represent differentially expressed and functionally relcvant
gencs. We acknowledge that our approach is limitcd, and is probably only
applicable to simplc comparisons within related ccll culturc models.

RESULTS

Genes Implicated by SAGE. The data in Table 1 show the num-
ber of different genes identified. Most genes were commonly ex-
pressed, and were not differentially expressed between the MCF7/
LCC1 and MCF7/LCC9 cells. A sclection of the genes identified by
SAGE, and predicted to be differentially expressed in MCF7/LCC1
and MCF7/LCC9 SAGE databases, is shown in Table 2. Presentation
of all of the genes expressed and/or differentially expressed is beyond
the scope of a single, focused study.® The criteria applied for gene
selection are described in “Materials and Methods.” NPM was in-
cluded because we already know it to be both estrogen regulated (23)
and indirectly associated with TAM treatment in patients (38). Con-
firmation of the differential expression of NPM (see Table 2 and
Fig. 2B) and altered CRE binding activity (the function of XBP-1; see
Table 2 and Fig. 3B) indicate that these represent reasonable criteria
for gene selection. Currently, the XBP-1 and NPM are the only genes
from the SAGE database comparisons for which we have attempted to
confirm differential expression/activation.

Comparing the SAGE databases identifies several genes that are
up-regulated in MCF7/LCC9 cells compared with MCF7/LCC] cells.
These genes include XBP-1, NPM, cathepsin D, HSP-27, and n-ras.
Increased CRE activity is indicated by the up-regulation of XBP-1,
which regulates gene transcription through these response elements
(39). XBP-1 is involved in regulating the expression of several tissue-
specific genes including tissue inhibitor of metalloproteinases, os-
teopontin, and osteocalcin (40). Significantly, both Perou et al. (13)
and West et al. (41) recently identified XBP-1 as being associated
with ER gene expression clusters in human breast tumor biopsies.
NPM is induced by estrogen in MCF-7 cells and is up-regulated in
estrogen-independent cells (23). NPM also provokes an autoimmune

? http://clarkclabs.georgetown.edw/gu_et al/gu_et al tinks.htmy.
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A

Fig. 2. Confirmation of the differential expression of
NPM, EGF-R, and IRF-1 in MCF7/LCC1 and MCF7/LCC9
cells. A4, EGF-R protein immunofluorescence as measured by
FACS (representative figure of three experiments). Arrows
indicate EGF-R signal, other signals are controls {no anti-
body; primary antibody but no sccondary antibody). Axes arc
abscissa = fluorescence; ordinate = cell counts. B, NPM
protein as mcasured by Western blotting (+P = 0.02) and
rep ed as a per gc of control (MCF-7 cclls growing
in CCS-IMEM); bars. £SE. Insert = representative Westemn B
blot. C, IRF-1 mRNA as measured by RNase protection
(+*P = 0.005, three independent replicate experiments)
and expressed in phosphorimager units; bars, *SE.
Insert = representative analysis: 36B4 is a ribosomal gene
(loading control).
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response in breast cancer patients, the magnitude of which is associ-
ated with TAM therapy (38).

The altered expression of cathepsin D is consistent with our data
published previously, showing increased secretion of this protein in
several of our hormone-independent MCF-7 variants (42). Cathepsin
D expression in breast tumors also is associated, at least in some
studies, with a poor prognosis (43). HSP-27 expression has been
implicated in refining the diagnosis of suspicious fine-needle aspirates
of breast tissues (44). Vitamin B12 binding proteins are expressed in
breast tumors (45). and vitamin B12 deficiency is a likely risk factor
for breast cancer (46). Altered expression of the n-ras-related gene is
consistent with the elevated ras signaling reported in some breast
cancer cell lines and tumors (47).

SAGE also identified genes expressed at higher levels in the
parental, antiestrogen-responsive cells (MCF7/LCC1) when com-
pared with MCF7/LCC?9 cells. These include ferritin, death-associated
protein-6, and the eukaryotic elongation factor-vy. Ferritin is expressed
in breast cancers, and breast tumor-derived ferritin may be a more
useful tumor marker than measuring levels of ferritin in serum (48).

Structure of the Gene Microarray Data. It has been suggested
that the cost required to perform gene microarray studics can be
reduced by combining RNA populations from several replicates and
performing a single hybridization on an Atlas array (16). However, we
found heterogeneity among replicate experiments, which often re-
mained after normalization. Logarithmic transformation of these data
reduced this heterogeneity but not to the point where a single replicate
could be used to obtain an adequate description of the data. Conse-
quently, multiple replicates are required to provide a more reliable
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Fig. 3. Basal transcriptional activity of NFkB and CRE in MCF7/LCC1 and MCF7/
LCC9 cells. A, NFkB. B, CRE. Data represent mean and are expressed as fold induction
relative to MCF7/LCCH; bars. %SE. All cclls were grown in the absence of estrogens
(CCS-IMEM). '
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Table 3 Representative list of differentially expressed genes identified by gene
microarray analyses

Gene’ Unigene no. MCF7/LCC1®> MCF7/LCC9

Gene function

NF«B Hs.75569 1 2 Transcription factor involved in
cell survival signaling
SOD Hs.75428 1 2 Enzymc involved in

detoxifying oxygen radicals

EGR-1  Hs.326035 3 1 Transcription factor
EGFR  Hs.77432 2 1 Growth factor receptor
IRF-1 Hs.80645 2 1 Transcription factor involved in

signaling to ccll cycle arrest
and apoptosis

TNFa Hs.241570 2 1 Cytokine

TNF-R1 Hs.159 2 1 Cytokine receptor involved in
signaling to apoptosis

“ Abbreviations are SOD, superoxide dismutasc; TNF-R1, tumor nccrosis factor-
receptor 1.

Y Data arc represented as level of expression relative to the other ccll line. Data arc
based on the mean values for each gene (6 microarrays of MCF7/LCC1; 5 microarrays of
MCF7/LCC9). Values are expressed to the nearest integer.

estimate of the putative gene expression profiles. These observations
on filter microarrays are consistent with recent reports for glass
slide-based and oligonucleotide array-based gene expression micro-
arrays (49, 50).

Fig. 14 is a visual representation of the multidimensional data (597
dimensions) in three dimensions. This visualization allows for an
inspection of the data structure, and the likely comparability of the
replicates among each other and between the two experimental groups
(antiestrogen-responsive  MCF7/LCC1 and antiestrogen-resistant
MCF7/LCC9). For this top level visualization, the replicate gene
expression profiles for MCF7/LCC1 and MCF7/LCC9 exist within
linearly separable regions of the gene expression data space after
elimination of one outlier array from each experimental group. The
top three principal components capture 81.2% of the ‘cumulative
variance in the data (597 dimensions). Thus, the data structure is
consistent with differences in the gene expression profiles as predicted
by the known differential antiestrogen responsiveness of the two
variants.

Genes Implicated by Gene Microarray Studies. The data in
Table 3 show the fold-differences in expression of selected genes
identified in the Clontech Atlas gene microarray studies selected using
the criteria described in “Materials and Methods.” The selection was
not intended to describe fully the data set, only to assist in an initial
exploration of the data. This small but rational subset of genes could
be additionally evaluated in focused studies to confirm the differential
expression patterns and establish potential functional relevance. Fur-
thermore, if members of this subset were truly differentially ex-
pressed, we could begin to understand how cells perceive antiestro-
gens and adapt to this selective pressure.

To determine whether these genes are broadly representative of the
differences between the gene expression profiles of MCF7/LCC1 and
MCF7/LCC9 cells, we generated a three-dimensional projection from
the seven-dimensional gene expression data space (Fig. 1B). This was
necessary because we used several criteria to construct the subset,
including some genes where fold-regulation or distribution of the data
were given more weight than formal statistical significance. Conse-
quently, we could not assume that we had maintained the linear
separability of the data, at the top level, as seen in all 597 dimensions.

We might not expect this small subset of expression data (<2% of
the information) to prove as effective in representing the respective
phenotypes as the full data set (597 genes). Nonetheless, as for the
597-dimension visualization, after elimination of outlier data the
seven-dimensional MCF7/LCC1 and MCF7/LCC9 profiles remain in
linearly separable, three-dimensional data space. The top three prin-
cipal components capture 98.9% of the cumulative variance in the

data (seven-dimensions). This observation suggests that these data
contain information that contributes to the differences in the molec-
ular profiles of these two variants, that these genes may contribute to
the respective biological phenotypes, and that additional studies of
their potential functional relevance are warranted.

Genes expressed at a higher level in the MCF7/LCC1 cells include
EGF-R, EGR-1, IRF-1, and both TNFa and its R1 receptor (TNF-R1).
A well-established inverse relationship exists between the expression
of EGF-R and ER in breast tumors (51). EGF-R can induce expression
of EGR-1 (52). and expression of both genes is lower in MCF-7/LCC9
cells. EGR-1 is a transcription factor with proapoptotic activity (53)
that can block NFkB function (54) and repress TGF-S receptor
expression (29). EGR-1 expression is down-regulated in 7,12-dimeth-
ylbenz(a)anthracene-induced mammary adenocarcinomas in rats (55).
IRF-1 is an IFN-regulated transcription factor that functions as a
tumor suppressor gene (56, 57) and is induced by TNFa (58). A
TNFa-mediated pathway for signaling to apoptosis occurs in MCF-7
human breast cancer cells (59, 60), and measuring scrum TNF con-
centrations may be a useful prognostic marker in breast cancer pa-
tients (61). Furthermore, HER-2/neu can block resistance to TNFa-
induced apoptosis in breast cancer cells, using a mechanism that
involves activation of NFxkB (62). We have previously implicated
overexpression of superoxide dismutase in resistance to TNFe in
MCF-7 cells (63). Superoxide dismutase appears to be up-regulated in
MCF7/LCCY cells (Table 3) and in TAM-stimulated MCF-7 xe-
nografts (64). NF«B (p65/RelA) appears expressed at higher levels in
MCF7/LCC9 cells. NFkB is overexpressed in ER-negative breast
cancer cells (65) and has an important role in the development of the
normal mammary gland (66).

NPM, EGF-R, and IRF-1 Are Differentially Expressed in
MCF7/LCC1 and MCF7/LCC9 Cells. The data in Table 2 and
Table 3 predict differential expression of NPM, EGF-R, and IRF-1
between MCF7/LCC1 and MCF7/LCC9 cells. To confirm these ob-
servations, we measured the levels of the EGF-R (immunofluores-
cence) and NPM proteins (Western blot) and IRF-1 mRNA (RNase
protection). The data in Fig. 24 show that MFC7/LCC9 cells express
lower amounts of EGF-R than MCF-7/LCC1 cells. NPM protein
expression is significantly increased in MCF7/LCC9 cells compared
with MCF7/LCC1 cells (Fig. 2B; P < 0.02), consistent with the
predicted data from the SAGE analyses (Table 2) and our previous
studies (23, 38). The higher levels of IRF-1 mRNA, seen in the
antiestrogen-responsive MCF7/LCCI1 cells in Table 3, are confirmed
by RNase protection analysis (Fig. 2C; P =-0.005). Both the gene
microarray and RNase protection analyses show an ~2-fold higher
level of IRF-1 expression in MCF7/LCCI cells, when compared with
the antiestrogen-resistant MCF7/LCC9 cells.

Transcriptional Regulatory Activities of NFxB and CRE Are
Increased in MCF7/LCC9 Cells. The increased expression of NFxB
(gene expression microarray) and XBP-1 (SAGE) imply increased
transcriptional activation of promoters containing NFkB and CRE
response elements, respectively. We confirmed these observations
directly, using commercially available promoter-reporter assays to
measure transcriptional activities. The data in Fig. 3 show that the
basal activity of both promoters is increased in MCF7/LCC9 cells;
~10-fold for NF«xB and 4-fold for CRE (P < 0.02). The increase in
transcriptional activation of the NF«kB constructs is greater than that
predicted by the gene array data, but mRNA, protein, and protein/
DNA binding activities can be poor predictors of the functional
activation of some transcription factors (67). This prediction is not
problematic for XBP-1, where the 4-fold increase in mRNA expres-
sion identified by SAGE (Table 2) compares well with the 4-fold
increase in basal transcriptional activation (Fig. 3B).

We next assessed whether ICI 182,780, the antiestrogen used to
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Fig. 4. Regulation of NFxB and CRE transcription by ICI 182,780 in MCF7/LCCI and
MCF7/LCCY cells. 4, NFkB (*P = 0.001, MCF7/LCC1 versus MCF7/LCC9). B. CRE
(not significant). NFxB and CRE data are represented as mean of transcriptional activation
expressed as a percentage of controls (vehicle-treated cells of the same cell line);
bars, *SE. Cells were grown in CCS-IMEM and treated with 10 nm ICI1 182,780 for 48 h
before measuring reporter gene expression.

generate the MCF7/LCC9 cells, could regulate the transcriptional
activities of NFkB and CRE. Whereas ICI 182,780 inhibits NF«xB
activity in the MCF7/LCC1 cells (TAM- and ICI 182,780-respon-
sive), this regulation is lost in the TAM and ICI 182,780 cross-
resistant MCF7/LCC9 cells (Fig. 44). In contrast, ICI 182,780 treat-
ment does not alter the transcriptional regulatory activities of the CRE
promoter in any of these variants (Fig. 48).

MCF7/LCC9 Cells Are Specifically Responsive to an Inhibitor
of NF«B Activity. The increased activation of NF«kB and loss of its
estrogenic regulation in MCF7/LCC9 cells suggests that these cells
might now be partly dependent on NF«B signaling for survival/
growth. Consequently, we compared the growth response of MCF7/
LCC1 and MCF7/LCC9 cells to parthenolide, a potent and specific
inhibitor of NF«B that can inhibit the inhibitor of NF«B kinase
repressor of NFkB (68, 69) and also binds NFxB in a highly ste-
reospecific manner to block DNA binding (70). Parthenolide produces
a dose-dependent inhibition of MCF7/LCC9 cells, with an apparent
IC,, of ~600 nm (Fig. 5). In contrast, parthenolide does not signifi-
cantly affect growth of MCF7/LCCI1 cells at these concentrations.
MCF7/LCC9 cells are significantly more dependent on the transcrip-
tional regulatory activities of NF«kB than their ICI 182,780-responsive
parental cells (P < 0.01 for MCF7/LCC9 versus MCF7/LCC1 at both
300 nM and 600 nm parthenolide).

DISCUSSION

We have begun to identify the molecular changes associated with
cell survival after prolonged ICI 182,780 treatment in breast cancer
cells. Whereas we have not attempted to confirm the altered expres-
sion of all implicated genes, some expression patterns are consistent
with the activities we have confirmed. Here we discuss only those
genes for which altered mRNA, protein, and/or transcriptional acti-
vation have been confirmed, and that are known to interact with each
other in various cellular models, i.e., IRF-1, NPM, NF«B, and CRE.

IRF-1 can function as a tumor suppressor and can signal to apo-
ptosis through both p53-dependent and p53-independent pathways
(71). These observations may partly reflect the ability of IRF-1 to
induce a caspase cascade through activation of either caspase 1 (ICE;
Ref. 72) and/or caspase 7 (73). Caspase 1 is involved in regulating
apoptosis in normal mammary epithelial cells (74), and overexpres-
sion of caspase 1 is lethal in MCF-7 human breast cancer cells (75).
Preliminary data from our laboratory demonstrate that overexpression
of IRF-1 inhibits anchorage-dependent colony formation and that the
rate of cell proliferation in MCF-7 cells is inversely related to the level
of IRF-1 expression (76). These data suggest that the down-regulation
of IRF-1 in MCF7/LCC9 cells may protect these cells from IRF-1-
induced inhibition of proliferation and/or induction of apoptosis.

NPM can function as an oncogene, its overexpression fully trans-
forming NIH 3T3 cells in a standard assay for oncogenic potential
(77). We have shown that levels of autoantibodies to NPM increase in
breast cancer patients 6 months before their recurrence. Consistent
with an estrogenic/antiestrogenic regulation of NPM, the levels of
these autoantibodies are lower in breast cancer patients that have
received TAM (38). The increased NPM expression in MCF7/LCC9
cells compared with MCF7/LCC1 cells may reflect oncogenic poten-
tial of NPM, an activity potentially related to its ability to inhibit
IRF-1 function (see below).

NF«B has been implicated in resistance to cytotoxic drugs and can
function as a survival factor in various cell types (78). Several aspects
of normal mammary gland development appear dependent on NFxB
activity (66), perhaps partly reflecting its estrogenic regulation (65).
Elevated NF«B activity arises early during neoplastic transformation
in the rat mammary gland (79). Widely expressed in breast cancer
cells and tumors, elevated NF«B activity is associated with estrogen-
independence (65, 66). Currently, NF«kB is the only protein known
to induce BRCA2 expression (80). ICI 182,780 cannot suppress the
increased NF«B activity in MCF7/LCC9 cells, despite inhibiting
this function in ICI 182,780-responsive cells (MCF7/LCC1). The
functional relevance of this observation was tested directly using
parthenolide, which both specifically binds NF«B and blocks
degradation of the endogenous NF«B inhibitor 1B, resulting in
the inhibition of NF«B transcriptional regulatory activities (68,
70). This activity of parthenolide has been used to evaluate the
functional role of NF«B in several recent studies (68, 69, 81, 82).
MCF7/LCC9 cells are significantly more sensitive to growth inhibi-
tion by parthenolide than their MCF7/LCC1 parental cells. This
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Fig. 5. Response to inhibition of NF«B activity by parthenolide. Data represent mean
of four dcterminations, where absorbance in cach treated population is expressed as a
pereentage of the absorbance in control cells (vehicle treated celis of the same ccll line).
*P = 0.01 MCF-7/L.CCI versus MCF7/LCC9. Cells were grown in CCS-IMEM without
(control; vehicle only) or with parthenolide supplementation (300 nm; 600 nm).
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observation is consistent with a greater functional reliance on NF«xB
activation for cell growth/survival, and implies that one option for
surviving antiestrogen exposure is the up-regulation of an estrogen-
regulated survival factor(s) concurrent with the loss of its ER-
mediated regulation. Furthermore, parthenolide is now in clinical
trials, and our data suggest that it may prove useful in combination
with Faslodex or other antiestrogens to either increase responsiveness
and/or delay the appearance of resistant disease.

XBP-1 has been identified recently in clusters of genes associ-
ated with ER-positive breast tumors in two independent studies
(13, 41), and its expression is increased in MCF7/LCC9 cells.
XBP-1 is a transcription factor that binds and activates CRE (39).
The importance of CRE-regulated events is widely reported in
many cell types (83, 84). These events include a likely role in
signal transduction either at or downstream of ER and PgR (85).
The relevance of increased CRE activity in MCF7/LCC9 cells is
additionally supported by recent evidence that CRE-decoy oligo-
nucleotides inhibit the growth of MCF-7 cells (86). We detected a
4-fold increase in CRE transcriptional activation in MCF7/LCC9
cells. Importantly, ICI 182,780 cannot regulate CRE activity
in either MCF7/LCC1 (ICI 182,780-responsive) or MCF7/LCC9
(resistant) cells. These data imply an additional option available
to breast cancer cells, a switch to signaling pathways that are
normally independent of ER-mediated signaling.

IRF-1, NPM, NF«B, and CRE are known to affect cell prolifera-
tion, apoptosis, and/or carcinogenesis. Two critical protein-protein
interactions directly link the IRF-1, NF«kB, and NPM proteins. Direct
binding occurs between IRF-1 and NPM (77), and between IRF-1 and
NF«B (87, 88). In both cases, the interactions with IRF-1 have
important effects on gene transcription and cell signaling. NPM bind-
ing inhibits the transcription regulatory activities of IRF-1 (77). A
coordinated perturbation in the regulation of these two genes has
occurred in the MCF7/LCC9 cells; NPM is up-regulated and IRF-1 is
down-regulated. Thus, overexpression of NPM could additionally
reduce the remaining lower levels of IRF-1, potentially blocking/
eliminating its ability to initiate an apoptotic caspase cascade through
caspase 1 and/or caspase 7. Such an effect would likely also eliminate
the ability of IRF-1 to induce p21°°P"**f (89) and cooperate with
wild-type pS3 in signaling to apoptosis (56, 57). Changes in the
amount of available IRF-1 will directly affect the number of IRF-1:
NF«B heterodimers available to regulate an additional series of genes.
Whereas NFxB will compete with NPM for IRF-1 binding, their
relative affinities for IRF-1 are unknown, and the preferred IRF-1
heterodimer remains to be established. IRF-1:NF«B protein-protein
interactions or other cooperative interactions are implicated in the
induction of ATF-2/jun (90), RANTES (91), VCAM-1 (88), inter-
leukin 6 (92), and MHC class 1 genes (87). A functional IFN-8
enhanceosome has been described that includes IRF-1, NFxB, and
ATF2/jun (93). The importance of both IRF-1 and NFkB in IFN-
induced signaling may contribute to the ability of IFNs to increase
responses to antiestrogens (94-96).

CRE activation also may interact with the pathways regulated by
IRF-1, NFkB, and NPM interactions. Delgado et al. (97) described a
cyclic AMP-dependent pathway that inhibits IRF-1 transactivation.
Thus, the increased CRE activity in MCF7/LCC9 cells may explain,
in part, the lower IRF-1 mRNA levels seen both in the gene expres-
sion arrays and in the IRF-1 RNase protection studies.

The concurrent changes in NPM, IRF-1, NF«B, and CRE suggest
a novel integrated signaling pathway that may involve the ability of
NPM and CRE to inhibit IRF-1 initiation of a caspase cascade to

apoptosis, the altered ability of cells to induce genes dependent on-

IRF-1:NFkB, and an increased activation of survival pathways that
involve both NF«kB and CRE. Studies to additionally establish the

nature, function, and regulation of this putative pathway are currently
in progress, including an overexpression of NF«B in sensitive cells
and a dominant-negative approach in resistance cells. Because we
looked only at cells that survived long-term antiestrogen exposure, the
ability of the changes implicated in the present study to protect from
an initial or short term exposure have yet to be determined. For
example, cells may or may not survive an initial antiestrogenic expo-
sure by the same mechanisms that allow for long-term survival.
Irrespective of whether these other genes are functionally involved,
their patterns of expression may be important in better predicting the
25% of ER+/PgR+, 55% of ER-/PgR+, and 66% of ER+/PgR—
breast tumors that do not respond to antiestrogens (2).

It is not possible, in a single focused study, to define all of the
potentially differentially expressed genes nor to establish their func-
tional relevance firmly. Because the number of cellular models stud-
ied is small, additional functional studies where expression of the
candidate genes is induced or repressed are in progress. Nonetheless,
our data imply that breast cancer cells have highly plastic transcrip-
tomes, with access to several signal transduction pathways for regu-
lating the choice to differentiate, proliferate, or die. For example,
MCF7/LCC9 cells have taken several possible interactive/interdepen-
dent approaches to circumvent the growth inhibitory effects of anties-
trogens. This plasticity in gene expression patterns is consistent with
the marked heterogeneity apparent in the clinical disease (2, 98).

In summary, our data suggest that one molecular profile associated
with surviving prolonged antiestrogen exposure may include loss of
ER-mediated signaling to apoptosis through IRF-1. This lost signaling
is achieved both by down-regulation of IRF-1 and a coordinated
up-regulation of its inhibitor NPM, and possibly another protein
partner NFkB. Up-regulation of CRE activities also is implicated
in this molecular profile. Other patterns of gene expression may
provide alternative routes to the resistant phenotype or in cells that
acquire a TAM-stimulated phenotype (2). The identification of these
nolecular profiles and signaling pathways may ultimately allow us to
understand ER-regulated signaling, facilitate the development of novel
treatment strategies, and allow clinicians to better identify antiestrogen-
responsive and -resistant breast tumors.
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ABSTRACT

Purpose: Gene expression microarray technologies have
the potential to define molecular profiles that may identify
specific phenotypes (diagnosis), establish a patient’s ex-
pected clinical outcome (prognosis), and indicate the likeli-
hood of a beneficial effect of a specific therapy (prediction).
We wished to develop optimal tissue acquisition, processing,
and analysis procedures for exploring the gene expression
profiles of breast core needle biopsies representing cancer
and noncancer tissues.

Experimental Design: Human breast cancer xenografts
were used to evaluate several processing methods for pro-
spectively collecting adequate amounts of high-quality RNA
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for gene expression micrearray studies. Samples were as-
sessed for the preservation of tissue architecture and the
quality and quantity of RNA recovered. An optimized pro-
tocol was applied to a small study of core needle breast
biopsies from patients, in which we compared the molecular
profiles from cancer with those from noncancer biopsies.
Gene expression data were obtained using Research Genet-
ics, Inc. NamedGenes cDNA microarrays. Data were visu-
alized using simple hierarchical clustering and a novel prin-
cipal component analysis-based multidimensional scaling.
Data dimensionality was reduced by simple statistical ap-
proaches. Predictive neural networks were built using a
multilayer perceptron and evaluated in an independent data
set from snap-frozen mastectomy specimens.

Results: Processing tissue through RNALater preserves
tissue architecture when biopsies are washed for 5 min on
ice with ice-cold PBS before histopathological analysis. Cell
margins are clear, tissue folding and fragmentation are not
observed, and integrity of the cores is maintained, allowing
optimal pathological interpretation and preservation of im-
portant diagnostic information. Adequate concentrations of
high-quality RNA are recovered; 51 of 55 biopsies produced
a median of 1.34 pg of total RNA (range, 100 ng to 12.60
pg). Snap-freezing or the use of RNALater does not affect
RNA recovery or the molecular profiles obtained from bi-
opsies. The neural network predictors accurately discrimi-
nate between predominantly cancer and noncancer breast
biopsies.

Conclusions: The approaches generated in these studies
provide a simple, safe, and effective method for prospec-
tively acquiring and processing breast core needle biopsies
for gene expression studies. Gene expression data from these
studies can be used to build accurate predictive models that
separate different molecular profiles. The data establish the
use and effectiveness of these approaches for future prospec-
tive studies.

INTRODUCTION

The emerging gene microarray technologies provide pow-
erful new methodologies with which to address several impor-
tant issues in breast cancer research. For example, it should be
possible to define gene expression patterns that can identify
specific phenotypes (diagnosis), establish a patient’s expected
clinical outcome (prognosis), and indicate the likelihood of a
beneficial effect of a specific therapy (prediction; Refs. 1 and 2).
Gene microarray technologies are performed on chips, glass
slides, or filters and allow the comparison of gene expression
profiles from two or more tissues or the same tissue in different
biological states (3). The technologies continue to develop, with
considerable discussion regarding which technology has the
greatest potential to address the molecular profiling of tumors.
Each of the major approaches has advantages and disadvan-
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tages, but the most important consideration is the ability of the
technology to address the chosen hypothesis (4). Overall, there
is no compelling evidence of major differences in the accuracy
or reproducibility of the various microarray platforms (4—6).
Studies that directly compare the nylon-based cDNA arrays with
either glass slide cDNA arrays and/or oligonucleotide chips
consistently report that these platforms produce comparable data
(5-8).

Because gene expression technologies provide an as-
sessment of mRNA abundance in a sample, all require the
production of a probe, labeled with either a radioactive
nucleotide or fluorescent molecule, generated from either the
total or polyadenylate RNA isolated from the sample. Cur-
rently, it is not possible to isolate adequate concentrations of
high-quality RNA from what would otherwise be the most
abundant source: the formalin-fixed, paraffin-embedded tu-
mor specimens available in established tumor banks. Only
fresh or appropriately frozen tissues provide the necessary
quality of RNA for the preparation of probes to hybridize to
existing gene expression microarrays.

Whereas many institutions have frozen tumor banks, these
may be of limited use in obtaining reproducible gene expression
profiles for some breast cancers. For example, most are heavily
biased toward large breast tumors (T;~T,). These tumors are
poorly representative of the small tumors now seen in many
patients for initial diagnosis (9). A further concern with existing
frozen tissue banks is the frequent lack of a standardized ap-
proach for tissue acquisition and processing. Tissue handling
between excision and freezing can vary considerably. For ex-
ample, some tumors are frozen within seconds of excision, and
others are placed on wet or dry ice after excision, whereas some
may stand for many minutes at room temperature before being
placed in liquid nitrogen. The importance of tissue processing is
often critica! for assessing various end points and can affect both
RNA stability for RNA in situ hybridizations and antigen sta-
bility/accessibility for immunohistochemistry (10).

The effect of tissue acquisition and processing on gene
microarray data has not been widely addressed. Nonetheless,
this is likely to be important for at least two critical parameters.
First is preservation of high-quality RNA. Most investigators
acknowledge the importance of using only pure, high-quality
RNA for gene microarray studies (11). The second factor is
maintenance of a tissue’s gene expression profile. For example,
hypoxia- or stress-induced responses can be induced in meta-
bolically active cells. Oxygen deprivation begins with the loss of
tissue perfusion occurring upon excision. This deprivation can
trigger a hypoxic response, characterized by the altered expres-
sion of specific genes (12, 13). Several of these genes are
transcription factors that further affect the expression of their
target genes (13).

One problem with these two factors is that both can affect
a sample, but RNA could still be obtained, a probe could still be
generated, and a molecular profile could still be obtained after
hybridization to a gene expression microarray. Subtle changes
that are time, temperature, pH, and/or oxygen dependent could
occur with sufficient variability that they arc almost impossible
to detect reproducibly. Some tumors with high metabolic activ-
ity may be more sensitive to hypoxia, producing a statistically
valid and biologically plausible clustering that could have re-

Table ] Experimental conditions for xenograft study
All samples were processed in duplicate.

Temperature of 72 h storage Wash solution Wash time
4°C 1:6 (RNALater:PBS) 5 min
4°C 1:9 (RNALater:PBS) 5 min
4°C 1:12 (RNALater:PBS) 5 min
4°C PBS 5 min
4°C No wash No wash
4°C 1:6 (RNALater:PBS) 120 min
4°C 1:9 (RNALater:PBS) 120 min
4°C 1:12 (RNALater:PBS) 120 min
4°C PBS {20 min
Room temperaturc No wash No wash
-20°C No wash No wash

sulted more from tissue processing rather than tissue biology.
Where such changes are subtle, expression profiles might still
appear grossly similar, complicating an assessment of tissue
processing artifacts. :

Given the bias of existing banks and the potential differ-
ences in tissue processing, many important questions in breast
cancer biology may require prospective study designs. Such
study designs are more valid for the exploration or validation of
new predictive and prognostic factors. Whereas optimized tissue
acquisition and processing strategies for prospective studies
offer the opportunity for greater control of tissue quality than
retrospective studies, these strategies have not been described.
In this study, we wished to develop a standard tissue acquisition/
processing method for prospective core needle breast biopsy
sampling. This method should avoid the initial use of liquid
nitrogen, preserve tissue architecture, and provide adequate con-
centrations of high-quality RNA " for microarray analysis. We
now report a simple tissue processing approach using a com-
mercially available reagent (RNALater) that is applicable to
prospective studies on core needle biopsies. RNA obtained from
this approach was compared with RNA from snap-frozen human
breast biopsies of neoplastic and nonneoplastic tissues, gene
expression microarray data were obtained, and an accurate neu-
ral network capable of discriminating between these tissues was
built and validated in an independent data set.

MATERIALS AND METHODS

Breast Cancer Xenograft Studies. MDA-MB-231
cells were inoculated into athymic nude mice as described
previously (14, 15). Mice were sacrificed, and tumor tissue
was obtained using sterile scissors and forceps. Neecdle biop-
sies were taken from the excised xenografts and placed into
separate tubes containing 0.5 ml of RNALater (Ambion,
Austin, TX) at room temperature. Samples were stored at
various temperatures for 72 h and subsequently processed
according to the scheme in Table 1. Each experimental con-
dition was explored in duplicate samples. Tissues were em-
bedded in OCT (BDH,; Poole, Dorset, United Kingdom), and
standard frozen sections were prepared from each sample.
Subsequently, sections were stained with H&E and evaluated
by the study pathologist. The remainder of the core was
stored at —80°C, and total RNA was extracted for evaluation.
All animal studies were performed under protocols approved
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by the Georgetown University Animal Care and Use Com-
mittee.

Patient Population. Patients undergoing a diagnostic
core needle or excisional biopsy at Georgetown University
Hospital were eligible for the tissue acquisition protocol, in
which additional cores were obtained for study purposes. All
patients signed a written consent form approved by the Geor-
getown University Medical Center Institutional Review Board.
Core biopsies provided by the radiologists were obtained with
either mammographic or ultrasound guidance. Core biopsies
obtained by the surgeons were obtained either after surgical
exposure of the tumor or during a routine needle biopsy. A total
of 1-4 cores were obtained from each patient for study pur-
poses, depending on the size of the breast lesion. In addition,
nine frozen breast tumor specimens were obtained from the
Department of Oncology, University of Edinburgh (Edinburgh,
Scotland, United Kingdom) for use in testing the neural net-
works for accuracy in identifying tissues as malignant or non-
malignant. These samples were collected after appropriate pa-
tient consent and consistent with the relevant United Kingdom
legislation. In this study, the pathologist was blinded to all
clinical information on all samples.

Collection and Handling of Human Breast Core Biop-
sies for Microarray Anmalysis. Generally, 1-4 core needle
biopsies (14-gauge needle) were obtained from each consenting
patient. Random cores were immediately snap-frozen in liquid
nitrogen; others were individually placed in separate cryo-tubes
containing 0.5 ml of RNALater solution. Snap-frozen tissues
were placed directly in Jiquid nitrogen from the core biopsy
needle, immediately upon removal from the patient. For the
RNA Later samples, core biopsies were placed in 500 pl of
RNA Later and maintained at 4°C for 24 h before snap-freezing.
Each tube was labeled with the patient’s name, hospital number,
and study number. Frozen samples were transferred to the
Lombardi Cancer Center’s Tissue and Histopathology Shared
Resource (Washington, DC) for processing.

Before removing the samples from the tube for frozen
section preparation, each sample was washed for 5 min on ice
with 500 pl of ice-cold sterile PBS (RNase free); otherwise,
samples in RNALater will not freeze in the cryostat. Each core
biopsy sample was then embedded separately in an OCT block.
A frozen section was taken, stained with H&E, and examined by
the study pathologist. OCT-embedded samples were maintained
frozen at —70°C until the analysis of the main tumor mass was
complete.

The study pathologist evaluated all biopsies to determine
the presence of invasive cancer and to estimate the relative
amounts of normal epithelium, stroma, and fat. Because samples
were to be used for microarray analysis, the percentage of
invasive cancer, normal epithelium, stroma, and fat was esti-
mated relative to cell nuclei only. Provided this histological
review offered no new clinical information important for patient
care, biopsies suitable for microarray were identified. In this
manner, tissue for expression microarray analysis was ensured
to be of no new diagnostic relevance. This determination is
important because RNA extraction destroys tissue architecture.
If the samples had contained information that modified the
surgical pathology diagnosis, these biopsies would not have
been used. This situation did not occur in this study.

Once released for study, all patient identifiers were re-
moved from each sample. The link between patient identifiers
and study identifiers was held in a confidential database. Access
to this database was reserved only for the clinical study principal
investigator and the data entry technician. The frozen clinical
material, mostly frozen in OCT, was directly provided to the
research laboratory for storage and/or processing. Upon receipt
in the research laboratory, tissue was either stored at —80°C or
processed immediately for RNA extraction.

Preparation and Quality Assessment of RNA from Fro-
zen Tissues. Frozen tissue was placed in a I X l-inch
plastic bag on dry ice and pulverized, and lysis buffer from
the Qiagen RNeasy kit was added (Qiagen, Inc., Valencia,
CA). Each sample was then transferred to a 1.5-ml centrifuge
tube, homogenized with a 1-ml syringe and an 18-gauge
needle, added to the Qiagen spin column, and centrifuged to
bind the RNA to the matrix. The column was washed with the
buffers provided in the kit, and the RNA was finally eluted
with distilled H,O. RNA concentrations were determined by
comparing the absorbance ratios (4,60 nm/A250 nm) Obtained
spectrophotometrically using a Beckman DU640 Spectro-
photometer (Beckman, Fullerton, CA).

Because using standard gel electrophoresis to assess RNA
quality would require almost the entire RNA sample, we used an
Agilent 2100 analyzer and RNA 6000 LabChip kits (RNA
microelectroseparation and analysis; Agilent Technologies,
New Castle, DE). A total of 100 ng of each RNA sample was
loaded/well. The analyzer allows for visual examination of both
the 18S and 28S rRNA bands as a measure of RNA integrity.

Probe Generation for Gene Microarray Hybridizations.
Probes were generated as described previously (16). This
method radiolabels. both the sense and antisense probe strands
and further increases probe-specific activity by incorporating
two radiolabeled nucleotides. Thus, tumors can be arrayed on
nylon filter arrays with as little as 100 ng of total RNA and
without RNA amplification (7, 16). Whereas an adequate signal
is generated with 100 ng of total RNA, the use of very low RNA
concentrations will likely affect the ability to adequately and
reproducibly detect many lower abundance mRNAs. We used
500 ng of total RNA, which is sufficient to allow the use of
approximately 70% of breast needle biopsies without either
RNA amplification or pooling. None of the RNAs was amplified
or pooled in the current study.

To synthesize the labeled cDNA probe, S00 ng of total
RNA were incubated at 70°C for 10 min with 2 mg of
oligodeoxythymidylate and then chilled on ice for 2 min. The
primed DNA was incubated at 37°C for 90 min in a solution
containing 1X first strand, 3 mm DTT, 1 mm dGTP/dTTP,
300 units of reverse transcriptase, 50 mCi of [**P]dCTP, and
50 mCi of [**P]JdATP. The second strand was synthesized by
adding 1X reaction buffer, 100 units of DNA polymerase I,
500 ng of random primers, I mm dGTP/dTTP, 50 mCi of
[**P]dCTP, and 50 mCi of [**PJdATP. The reaction was
incubated for 2 h at 16°C. A radiolabeled probe was purified
using a BioSpin-6 chromatography column (Bio-Rad) and
denatured by boiling for 3 min. A purified probe was added
to the hybridization roller tube containing the prehybridized
GeneFilter and incubated for 12-18 h at 42°C in a Robin
Scientific Roller Oven. For these studies, the NamedGenes
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Fig. 2 MDA-MB-231 human
breast tumor xenografts pro-
cessed for frozen tissue section-
ing in RNALater. A, no wash;
B, washed in PBS:RNALater
(1:6: v/v) for 2 h at 4°C; C,
washcd in PBS:RNALater (1:6;
viv) for 5 min at 4°C; D,
washed in PBS for 5 min on ice.

filters (Research Genetics, Inc., Huntsville, AL) were used.
These filters contain 4032 known genes, 192 housekeeping
genes, and 192 control genes on each filter. Each hybridized
GeneFilter was washed twice in 2X SSC, 1% SDS at 50°C
for 20 min and once at 55°C in 0.5X SSC, 1% SDS for 15
min. Hybridization signals were detected by phosphorimag-
ing using a Molecular Dynamics Storm Phosphorimager
(Molecular Dynamics, Sunnyvale, CA). The sensitivity and
reproducibility of these and other nylon filter-based cDNA
microarrays have been widely reported (7, 17-20).

1A
17

s148
$18”

Fig. I The quality of RNA recovered from hu-
man corc breast ncedle biopsics. RNA was cvalu-
ated using an Agilent 2100 analyzcr. A4, xe-
nografts; B, breast core needle biopsies arrayed in
Figs. 5 and 6 and further characterized in Table 4.
In the images displayed. fluorescence scales are
not cquivalent between lanes but have been nor-
malized for clarity.

Normalization of Data. Pathways software algorithms
(Research Genetics, Inc.) were used to correct for nonspecific
binding of the probe to filter (background correction). Ap-
proaches for signal normalization, intended to correct for dif-
ferences in probe specific activities, hybridizations, and other
interexperiment variables, are diverse (11). In the present study,
the average of all data points was used to calculate a normal-
ization factor; the normalized intensity value for each spot was
obtained by multiplying the normalization factor by the raw
intensity (11).
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Fig. 3 Human brecast needle
biopsies processed for frozen
tissuc sectioning in RNALater.
A, no wash; B, washed in PBS:
RNALater (1:6; v/v) for 2 h at
4°C; C, washed in PBS:RNA-
Later (1:6; v/v) for 5 min at
4°C; D, washed in PBS for 5
min on ice.
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Analysis of Gene Microarray Data. The optimal ap-
proach for analyzing the high dimensional gene expression data
generated by gene microarray studies remains unclear. The high
dimensionality of these data are problematic, with most existing
analyses functioning more accurately in low dimensionality
(21). However, rather than making statistical inference for iden-
tifying and studying functionally relevant genes, the study goal

was to validate the tissue acquisition and processing methods .

and demonstrate the applicability of this approach for building
clinically relevant predictive models.
Recently, we devised a simple approach to the exploration

Fig. 4 Optimized tissuc acquisition/processing
procedurc for breast necdle biopsics.

~~=% Pathology -

Informative

|

Retain

of small studies with two experimental groups.® Our approach
used simple statistical analysés to reduce data dimensionality
and identify subsets of discriminant genes. This approach is
similar in principle to that used by Hedenfalk et al. (22).
Because the class of each sample (cancer versus noncancer) is

#Z. Gu. Association of interferon regulatory factor-1, nuclcophosmin,
nuclear factor-kappa-B and cAMP binding with acquired resistance to
Faslodex (ICI 182,780). submitted for publication.
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Table 2 Concentration of RNA recovered from breast needle biopsies

Biopsics RNA = 100 ng” Total RNA rccovered (X + SE) Range (>100 ng)
n =55 51/55 (93%) 3.63 = 0.48 pg: median = 1.34 pg 100 ng to 12.60 pg
n=25 Snap-frozen 2.04 = 0.51 pg; median = 1.32 pg 100 ng to 9.00 pg*
n=21 RNALater 3.49 = 0.78 pg; median = 2.70 pg 100 ng to 12.60 pg

“ Number producing =100 ng of RNA, the minimum useful concentration of RNA without amplification, irrespective of the tissue acquisition

and processing method applied.

» We did not have complete data on processing for the first 9 of the 55 samples.
¢ P = 0.13; Mann-Whitney rank-sum test; RNALater versus snap-frozen tissue.

Table 3 Characteristics of breast necdle biopsy material

A. Biopsy Source ER/PR? % Cancer % Normal % Fat % CT RNA (pg)”
15A° Radiology ND 0% 70%. 0% 30% 3.28
S6A° Surgery ND 0% 0% 100% 0% 249
10A Radiology ND 0% 5% 45% 50% : 2.07
11A Radiology ND 0% 20% 40% 40% 1.36
17¢ Radiology ND 2% 0% 90% 8% 6.70
S2A Surgery +/+ 90% 0% 5% 5% 3.20
S3A° Surgery +/+ 90% 0% 0% 10% 2.70
S10D¢ Surgery +/+ 80% 0% 0% 20% 6.50
S14B° Surgery -] 80% 0% 0% 20% 4.20
S18A Surgery +/= 90% 0% 0% 10% 1.70
B. RNA recovered from biopsies used in this study (X SE)¢
No RNALater 2.21 * 0.52 pg total RNA?
RNALater 3.83 * 0.73 pg total RNA
Overall RNA recovered 3.10 * 1.60 pg total RNA
C. Casc Biopsics Pathological diagnosis
S2 S2A Invasive adenocarcinoma
S2B Invasive adenocarcinoma
s2C Invasive adenocarcinoma
S6 S6A No cancer
S6B No cancer
S6C No tissuc
S10 S10A No cancer
S10B Possible DCIS
S10C No cancer
S10D Invasive adenocarcinoma

“ PR, progesterone receptor; CT, connective tissue; DCIS, ductal carcinoma in situ; ND, not determined.
* Total RNA recovered from each needle biopsy. Five hundred ng of each RNA population were used to generate the probes hybridized to obtain

the data presented in Fig. 5.
“ Biopsics processed in RNALater.
4P = 0.129; Student’s 7 test; RNALater versus no RNALater.

known from the histopathological analyses, dimensionality can
be reduced in a supervised manner by performing a series of
statistical tests. The major purpose of performing these tests was
only to select a group of genes that would be used for data
visualization and analysis. Student’s ¢ test and a ¢ test for
unequal variances (each assumes normal distribution of the
data) and a nonparametric (distribution-free) Wilcoxon test were
used. Whereas the inflated type 1 error will overestimate sig-
nificant differences, the incidence of false negative estimates
should be smaller. Because the distribution of the data among
and within replicate experiments and for individual genes can-
not be determined (23), both logarithm-transformed and non-
transformed data were compared.

Two reduced dimensional data sets were selected; one
comprising genes with Ps < 0.05, and one comprising genes

with Ps < 0.02. Because of their marked biological differences,
these phenotypes should be easily separable. Thus, the data were
visualized using our Fisher separability-based multidimensional
scaling approach that projects high dimensional data into three-
dimensional data space (24, 25). Because it has become widely
used, visualization using the simple hierarchical clustering de-
scribed by Eisen et al. (26) is also presented.

Generation and Testing of a Neural Network. To de-
termine whether the genes we selected could be used to separate
cancer from noncancer tissues, a neural network was trained
using the gene expression microarray data from five cancer
biopsies and five noncancer biopsies. Neural networks can be
considered as parallel computing systems consisting of many
simple processors with many interconnections. The main advan-
tages of neural networks are that they can learn complex non-




Clinical Cancer Research 1161

linear input-output relationships, use sequential training proce-
dures, and adapt themselves to the data (27, 28).

The learning process involves updating network architec-
ture and connection weights so that the predictive model can
efficiently perform a specific classification task. We used a
multilayer preceptron to design a nonlinear neural classifier,
using each of the gene’s expression levels in the tissue samples
as the input and the cancer versus noncancer phenotype of each
sample as the output. Consequently, the network output comes
to approximate the posterior Bayesian probabilities of a sample
being either cancer or noncancer given its gene expression
profile (27, 29, 30). Three experimental configurations were
tested, with either the top 40, 80, and 103 dimensions (data set
selecting the top 103 genes; P < 0.05) or 10, 20, and 30
dimensions (data set selecting the top 30 genes; P < 0.02).
These top genes were selected based on their fold difference
between cancer and noncancer and their respective Ps. Two
prediction models were built, one with 3 hidden nodes and 8
inputs and one with 5 hidden nodes and 18 inputs. Mean-
squared error estimates were used to explore network perform-
ance. The “leave-one-out” method was used for the initial test-
ing and training of each neural network (27, 29, 30).

RESULTS

RNA Quality and Tissue Architecture from Xenograft
Tissues Processed Using RNALater. Recovery of high-qual-
ity RNA was optimal when OCT-embedded tissue samples were
removed from frozen blocks using a small volume of RNA-
Later, which thawed and softened the embedding medium be-
fore tissue extraction from the blocks. Thus, the frozen block
was placed in a small plastic tray, with the embedded tissue
facing up, and 500 ul of RNALater were pipetted on top. Using
this method, seven of eight samples yielded high-quality RNA
(Fig. 14; RNA integrity analyzed using the Agilent 2100 bio-
analyzer and RNA 6000 LabChip kit). In previous experiments,
where the OCT block was dissolved by vigorous shaking in a
large volume of PBS and tissue fragments were recovered with
a strainer, only 6 of 12 samples yielded fully intact RNA (data
not shown). '

Pathology was not interpretable from material frozen di-
rectly in RNALater and transferred to OCT without wash steps
(Fig. 24). This reflects inadequate freezing in the cryostat and
consequent tissue folding during the cutting process. When
washed in PBS:RNALater (1:6) for 2 h at 4°C, the tissue did not
fold on cutting, but cell outlines appeared blurred, making
pathological interpretation difficult (Fig. 28). Washing in PBS:
RNALater (1:6) for 5 min at 4°C also eliminated tissue folding,
but now the cell outlines appeared distinct. Nonetheless, tissue
fragmentation occurred in some specimens, making pathological
interpretation suboptimal (Fig. 2C). Optimal preservation of
tissue architecture was obtained by washing tissue for 5 min on
ice with ice-cold PBS. Cell margins were clear, tissue folding
and fragmentation were not observed, and the integrity of the
cores was maintained, allowing optimal pathological interpreta-
tion (Fig. 2D). Similar data were obtained from a human breast
core biopsy released to this study (Fig. 3 4-D). A scheme of the
optimized tissue acquisition protocol is shown in Fig. 4.

£ VOd

03

02

0.1

]

® ® @ O O A A A A A

Fig. 5 Structure of the gene expression data using the top 103 genes. 4,
projcction from top 103 genes (103 dimensions), sclected by ¢ test
comparisons of log,,-transformed gene expression data (P = 0.05) and
projected into three dimensions; B, hierarchical clustering of samples in
2 dimensions based on 1-Pearson’s coefficient matrix of the top 103
genes. Snap-frozen tissue: O, noncancer; A, cancer. RNALater-
processed tissuc: @, noncancer; A, cancer.

Recovery of High-quality RNA from Human Breast
Biopsies for Gene Microarray Studies. Cores were removed
from OCT by placing the frozen block in a small plastic tray, with
the embedded tissue facing up, and pipetting 500 pl of RNALater
on top. Intact cores were easily picked out of the OCT, which
remained semisolid, using a sterile pipette tip. From a study of 55
breast needle biopsies, we obtained =100 ng of RNA on almost all
samples (Table 2). The median value (1.34 pg) shows that most
biopsies produce sufficient RNA to generate data using 500 ng of
total RNA. There was no significant difference between frozen and
RNA Later-processed biopsies in the mean concentrations of total
RNA recovered (Tables 2 and 3). Thus, prospectively collected
breast needle biopsies, either directly snap-frozen or processed in
RNALater, can produce adequate RNA concentrations for use in
gene microarray studies.

A further requirement of gene expression microarray ex-
periments is the isolation of high-quality RNA (11). Sufficient
RNA was not recovered to allow for an assessment of RNA
quality by both standard gel electrophoresis methods and gene
microarray studies on the same samples. Because gel electro-
phoresis requires ~1 pg of RNA, the Agilent 2100 “lab-on-a-
chip” technology was used to assess RNA quality. This tech-
nology requires only 100 ng of RNA to determine quality, with
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Table 4 Genes comprising the 30-dimensional data set

A. Genes that appear up-regulated in cancer tissue

P
Gene C:NC? t test” Unequal ¢ test log, Wilcoxon
BTF-2 32 0.010 0.026 0.001 0.008
pl60 3.1 0.016 0.030 0.027 0.095
spr2 3.0 0.006 0.013 0.007 0.008
Interferon inducible 9-27 29 0.007 0.019 0.003 0.008
Human surface antigen 2.7 0.018 0.035 0.023 0.056
Grbl4 2.6 0.004 0.011 0.001 0.008
gp250 precursor 2.6 0.008 0.009 0.002 0.016
TAKI-binding protein 24 0.014 0.010 0.002 0.008
Myosin-binding protein H 23 0.016 0.022 0.011 0.032
RP3 ) 2.3 0.006 ) 0.008 0.004 0.016
a-Catenin 23 0.001 0.004 0.001 0.008
T3 receptor cofactor-1 2.3 0.005 0.006 0.015 0.016
DAP-3 22 0.017 0.021 0.025 0.032
Selenoprotein-W (selW) 2.1 0.015 0.023 0.018 0.056
Ferroxidase 2.1 0.007 T 0.011 0.008 0.016
Cytochrome ¢ 2.1 0.017 0.017 0.044 0.032
RAN-BP8 2.1 0.017 0.018 0.016 0.032
Aspartate aminotransferase-1 1.9 0.010 0.011 0.009 0.032
unc-18 homologue 1.9 0.007 0.010 0.005 0.008
Phosphethanolamine cytidylyltransferase 1.9 0.007 0.007 0.001 0.016
Frezzled (fre) . 1.9 0.016 0.024 0.014 0.016
Interferon a-induced 11.5 kDa 1.8 0.017 0.019 0.017 0.032
Ubiquitin activating enzyme El 1.8 0.015 0.015 0.011 0.032
Macrophage-stimulating 1 1.8 0.014 0.014 0.022 0.032
- Ah receptor 1.8 0.002 0.004 0.002 0.008
B. Genes that appcar up-regulated in noncancer tissues
P
Gene C:NC” ? test” Unequal t test log,, Wilcoxon
Neurofibromin 2 0.6 0.005 0.005 0.006 0.008
Frizzled-related protein 0.5 0.016 0.025 0.015 0.031
Type II keratin 04 0.006 0.007 0.027 0.008
CAGH4 0.4 0.004 0006 . 0.003 0.008
Dihydroguanosine triphosphatase 0.3 0.014 0.033 0.002 0.008

“ C:NC, ratio of expression level in cancer versus noncancer. Genes were sclected on the basis of C:NC = 1.8 (approximately 2-fold); P = 0.02

(estimated to three significant figures) in Student’s ¢ test.

"t tests used are: 7 test, Student’s (untransformed data); Unequal, unequal variance (untransformed data); ¢ test log,,, Student’s ¢ test on
log, o-transformed data; Wilcoxon, Wilcoxon rank-sum test (nonparametric).

specificity comparable with or better than that obtained from
standard gel electrophoresis. Consequently, RNA quality can be
assessed on samples that will later be subjected to gene microar-
ray analysis. As is evident from Fig. 1B, >90% of representative
biopsies produced high-quality RNA.

Analysis of Core Needle Breast Biopsies and Visualiza-
tion of Gene Expression Data. To assess the applicability of
the tissue processing procedure, we obtained total RNA from
five random breast cancer biopsies and five random biopsies of
noncancer tissue (Table 3). All tissues were evaluated by the
study pathologist before release for our studies to ensure that the
investigational cores contained no diagnostically useful infor-
mation. Both biopsies processed in RNALarer and biopsies
frozen without RNALater were analyzed. These biopsies were
approximately equally represented in each group (RNALater
processed: cancer = 3; noncancer = 3). RNA was prepared, and
probes were generated as described above. The mean RNA
concentrations recovered by both methods were comparable

(see also Table -2). Probes were hybridized to NamedGene
filters, and signal was measured using a Molecular Dynamics
Storm Phosphorlmager. Digitized representations of the hybrid-
ized filter signals were imported into the Pathways software for
background correction and normalization.

Normalized gene expression data were imported into the
visualization algorithm, and scatter plots of the gene expression
data were generated. We first reduced dimensionality by elim-
inating noninformative genes. Hence, we excluded those genes
whose expression was not likely to be different between the
cancer and noncancer groups (multiple # tests, P > 0.05). A total
of 103 genes met this criterion and were used to generate a
three-dimensional (from 103-dimensional) plot of the data (Fig.
54). The three axes are the first three principal components
fitted to the cancer and noncancer molecular profile data. The
cumulative proportion of the variance captured by each princi-
pal component axis is: (a) principal component axis 1, 55%; (b)
principal component axis 2, 72%; and.(¢) principal component




Clinical Cancer Research 1163

axis 3, 79%. We also applied hicrarchical clustering, similar to
approaches used by others (26). based on Euclidean space
analysis (1-Pearson’s correlation coefficient matrix). The latter
approach could not completely separate two cancers from the
clusters of noncancers (Fig. 58). PCAS-based multidimensional
scaling visualization separated breast cancers (zriangles) and
noncancer tissue (circles) into linearly separabie gene expres-
sion data space. However, it should be noted that neither ap-
proach provides a statistical assessment of separability, only a
visualization of data structure. Whereas the number of data
points is limited, the multidimensional scaling visualization is
consistent with our ability to identify a putative molecular
profile that can separate neoplastic from nonneoplastic tissues.

This subset of genes is expected to include some false
positives, reflecting the type 1 error associated with the selec-
tion. Consequently, data dimensionality was further reduced
using more conservative criteria (P =< 0.02 and regulation =1.8-
fold). We chose this fold regulation to include all =2-fold
differences in mean gene expression levels between cancer and
noncancer tissues. The analysis produced a 30-dimensional data
set; 25 signals (genes) were up-regulated in the neoplastic
biopsies (Table 44), and 5 signals were up-regulated in the
nonneoplastic biopsies (Table 4B). The ability of this subset to
separate cancer from noncancer was also evaluated using both
our PCA-based multidimensional scaling approach and simple
hierarchical clustering. The cumulative proportion of the vari-
ance captured by each principal component axis is: (a) principal
component axis 1, 64%; (b) principal component axis 2, 75%;
and (c) principal component axis 3, 82%. Neoplastic and non-
neoplastic tissues (Table 3) were now linearly separable in gene
expression data space by both visualization methods (Fig. 6, 4
and B).

Neural Network Predictors of Biopsy Phenotypes.
Having reduced the dimensionality, it was necessary to assess
whether the expression patterns of remaining genes in the 103
and 30 dimensions contained useful discriminatory information.
Thus, the ability of various gene subsets to train accurate neural
network predictors that could predominantly separate cancer
from noncancer tissues was assessed. The three configurations
tested (1-3 hidden nodes) for genes within the 30- and 103-
dimensional data sets are described in “Materials and Methods.”
All were evaluated using the leave-one-out method. Whereas the
number of microarrays from which the data are obtained is small
(n = 10), each configuration achieved a 0% misclassification
rate (network training) for cancer versus noncancer, whether in
103 or 30 dimensions and with either log,,, or nontransformed
gene expression data.

Because the initial training and testing were done on the
original data set from the Georgetown University samples, we
tested the neural networks against an independent data set of
nine frozen breast specimens from the University of Edinburgh.
These were snap-frozen mastectomy specimens rather than core
needle breast biopsies, but they should contain a mixture -of
cancer and noncancer cells and provide a strong and independ-

6 Thc abbreviations used are: PCA, principal component analysis; ER,
estrogen receptor.

[A e

]
® & ¢ O O A A A A A

Fig. 6 Structurc of the gene expression data using the top 30 genes. 4.
projection from top 30 genes (30 dimensions), selected by ¢ test com-
parisons of log,-transformed genc cxpression data (P = 0.02; =1.8-
fold difference) and projected into three dimensions; B, hierarchical
clustering of samplcs in 2 dimensions based on 1-Pearson’s coefficient
matrix of the top 30 genes. Snap-frozen tissue: O, noncancer; A, cancer;
RNALater-processed tissuc: @, noncancer; A, canccer.

ent challenge for the neural network. The neural network model
should accurately predict as cancer any biopsy comprising
>80% cancer tissue.

Gene expression data were generated using the same Re-
search Genetics filter technology and queried in the predictive
model. For both the 103 and 30 gene data sets, the nontrans-
formed data provided the more accurate models. Both models
predicted that all nine samples should be cancer and not non-
cancer. The pathologist who evaluated the samples for the
training set subsequently performed histopathological analysis
of stored samples of'these tissues. All nine samples were con-
firmed as =80% cancer specimens. Thus, no samples in the
independent test data set were misclassified, demonstrating the
neural network’s predictive accuracy. When the log;, data were
used, the models misclassified 1 of 9 tumors (30 dimensions;
89% accurate) and 2 of 9 tumors (103 dimensions; 78% accu-
rate). The lower classification rate with the 103 genes probably
reflects the increased type 1 error associated with this data set
and the failure to exclude some uninformative genes.

Genes Differentially Expressed between Breast Cancer
and Noncancer Tissues. The data in Table 4 show that the
choice of ¢ test has only a marginal effect on data selection for
supervised dimension reduction. If we make no assumption
regarding distribution of the data, approximately 1 in 3 genes
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Table 5 Function of selected genes

UniGence
Gene name(s) no.” Function Ref. no.
BTF2 (butyrophilin) Hs.167741 Glycoprotein component of human milk fat globule membranes; 35 and 41
membrane-associated receptor for association of cytoplasmic
droplets with the apical plasma membrane
grbl4 (growth factor receptor-bound Hs.83070 Member of the grb7 family; phosphorylated by a PDGF- 37
protein 14) regulated scrine kinase; expression correlates with ER
expression
TABI; TAK1 (MAPKKK; TGFB-activated Hs.31472 Stimulates NFkB activation; implicated in signaling in response 42 and 43
kinase-1) binding protein-1 to TGF-B and TNF-a; activates plasminogen activator
inhibitor 1
o-Catenin Hs.178452 Cell adhesion molecule; binds E-cadherin; associated with 38 and 44
tumor grade and ER expression
DAP3 (dcath-associated protein-3) Hs.159627 Proapoptotic, nuclcotide-binding protein 45 and 46
Ceruloplasmin; ferroxidase Hs.28896 Copper transport protein; present in breast milk; serum levels 33, 34, and 47
are elevated in breast cancer patients with progressive disease
but not in patients in remission or those with benign breast
lesions
Ah receptor (aryl hydrocarbon receptor) Hs.172287 Binds cnvironmental toxins; interacts with ER; can block the 36, 48, and 49
transcriptional activity of ER; binds ER co-rcgulators
ERAPI140 and SMRT
NF2 (ncurofibromatosis-2) Hs.902 Tumor suppressor; rarcly mutated in breast cancer 50 and 51
Frizzled-related gene Hs.7306 Secreted protein; lost in ~80% of breast cancers; apoptosis 52 and 53

related gene, induced by Adriamycin

“The UniGene databascs can be found at http://www.ncbi.nlm.nih.gov/UniGene/Hs.Home.html.
” PDGF, platelet-derived growth factor; NF«B, nuclear factor kB; TGF, transforming growth factor; TNF, tumor necrosis factor.

would be rejected by relying solely on the nonparametric anal-
yses, a =1.8-fold differential expression, and a cutoff of P <
0.02. The 30 target cDNAs comprising the 30-dimensional data
set are presented in Table 4.

DISCUSSION

Generally, prospective study designs are more valid for the
exploration or validation of new predictive and prognostic fac-
tors. Retrospective breast cancer studies may be compromised
by the bias toward larger tumors in many existing frozen tumor
banks, whereas the average size of most newly diagnosed breast
tumors continues to decrease (9). Thus, many studies into the
molecular biology of such early lesions may need to be done
prospectively. Investigators at single academic institutions can
often prospectively obtain frozen samples under a rigorous
collection protocol. However, the ability to do so at multiple
institutions or when local clinics and community. physicians are
also involved can be problematic. A rapid, standard tissue
processing approach should allow for the use of tissues from
multiple institutions in a controlled manner. For example, it
should be possible to reduce possible changes in molecular
profiles associated with differences in tissue acquisition and
processing. Whereas these concerns have not been explored in
detail experimentally, tissue processing clearly affects the per-
formance of other molecular biological technologies applied to
human biopsies and tumor tissues (10).

To address these issues, we conducted studies to identify
an optimal tissue acquisition, processing, and analysis pro-
cedure for exploring the gene expression profiles of prospec-
tively accrued breast core needle biopsies. Because RNA
extraction destroys tissue architecture, we developed a novel
method for tissue processing that would allow us to obtain

samples in a uniform manner, preserve RNA quality/quantity,
and, most importantly, retain all potentially diagnostically
relevant information.

Tissue placed in RNALater can be left at room temperature
forup to 1 hat37°C, | week at 25°C, and =1 month at 4°C and
retain fully intact RNA (31). Our data show that biopsies pro-
cessed immediately in either liquid nitrogen or RNALater can
produce sufficient concentrations of high-quality RNA for nylon
filter microarray analysis without RNA amplification. This
amount of RNA is also adequate for amplification for use with
other gene expression microarray technologies (32). If pro-
cessed carefully, tissue architecture can be maintained from
biopsies collected in RNALater. This is clearly important be-
cause some small breast lesions can be completely removed by
the biopsy procedure. These core biopsies should not be used for
studies if critical diagnostic information could be lost. We
estimate that, using the approaches described in this study,
approximately 90% of suitable core needle breast biopsies
should produce sufficient material for gene expression microar-
ray studies.

Our studies demonstrate that the RNA recovered can be
used to generate relevant gene expression microarray informa-
tion. Relevance is evident from our abilities to identify differ-
entially expressed genes associated with breast cancer cells and
to build accurate neural network predictors that can identify
cancer from noncancer samples based solely on their gene
expression profiles.

Among the differentially expressed genes in the reduced
30-dimensional space, we would expect to find either some
genes already implicated in breast cancer or known to be ex-
pressed in normal or neoplastic breast tissues. Consistent with
this expectation, several genes of potential relevance were iden-
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tified. For example, ceruloplasmin is up-regulated in neoplastic
breast tissues, and elevated serum levels of ceruloplasmin are
associated with recurrent- breast cancers (33, 34). The BT2
glycoprotein is a milk protein (35) and might be expected to be
expressed in tissues predominately composed of breast epithe-
lial cells.

ER protein status is determined routinely for cancer but not
noncancer biopsies. Because four of the five tumor biopsies
were ER positive, we also would expect to find genes with
expression patterns known either to be associated with ER or to
modulate ER function. At least three genes meet these criteria.
The aryl hydrocarbon receptor is known to interact with ER and
affect its function (36), and the expression of both grbi4 and
a-catenin is associated with ER expression in breast tumors
(Refs. 37 and 38; Table 5).

The discriminant power of the genes selected is evident
from the accuracy of the neural networks built using the data
from the initial five cancer and five noncancer biopsies. The
ability to accurately identify independent samples as cancer
shows that the genes of interest are expressed or repressed in
both patterns and at levels consistent with the model. This is an
appropriate and rigorous test of the approach because the goal
was to build molecular predictors, rather than to identify func-
tionally relevant genes. Building a predictor is also a much more
efficient test of the selected genes than would be obtained by
simply confirming expression gene by gene in more standard
assays: Northern blot, RNase protection, or real-time PCR.
Confirming the differential expression of each gene is unneces-
sary for building clinically relevant predictive models. Unlike
studies to identify functionally relevant genes, the discriminate
power of each signal from the target cDNAs on the array is
independent of whether that signal originates from hybridization
to its expected mRNA.

The gene expression profile data and neural network per-
formance suggest that, at least for samples of very different
biologies, contamination of samples with =80% of other cell
types may not confound analyses for molecular profiling.
Whether this observation can be extrapolated to other studies
remains to be further established. Nonetheless, the resource
intensive requirements of microdissection and RNA amplifica-
tion may not be absolute requirements for all molecular profil-
ing studies.

The tissue acquisition and processing methods, dimension
reduction, data visualization approaches, and neural network
analyses we describe may be useful in the design of larger
prospective studies. We continue to develop other data visual-
ization, normalization, and exploration algorithms that also may
be of use in the analysis of gene expression microarray studies
(24, 25, 39, 40).
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